78 resultados para Reverse Genetics
Resumo:
Ephrins are cell surface-associated ligands for Eph receptors and are important regulators of morphogenic processes such as axon guidance and angiogenesis. Transmembrane ephrinB ligands act as "receptor-like" signaling molecules, in part mediated by tyrosine phosphorylation and by engagement with PDZ domain proteins. However, the underlying cell biology and signaling mechanisms are poorly understood. Here we show that Src family kinases (SFKs) are positive regulators of ephrinB phosphorylation and phosphotyrosine-mediated reverse signaling. EphB receptor engagement of ephrinB causes rapid recruitment of SFKs to ephrinB expression domains and transient SFK activation. With delayed kinetics, ephrinB ligands recruit the cytoplasmic PDZ domain containing protein tyrosine phosphatase PTP-BL and are dephosphorylated. Our data suggest the presence of a switch mechanism that allows a shift from phosphotyrosine/SFK-dependent signaling to PDZ-dependent signaling.
Resumo:
Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.
Resumo:
Cystic fibrosis (CF) is the most common life-shortening autosomal recessive disorder in Caucasians, and is associated with at least one mutation on each CF transmembrane conductance regulator (CFTR) allele. Some patients, however, with only one identifiable point mutation carry on the other allele, a large deletion that is not detected by conventional screening methods. The overall frequency of large deletions in patients with CF is estimated to be 1-3%. Using the CFTR Multiplex Ligation dependent Probe Amplification Kit (MRC-Holland, Amsterdam, Netherlands) that allows the exact detection of copy numbers from all 27 exons in the CFTR gene, we screened 50 patients with only one identified mutation for large deletions in the CFTR gene. Each detected deletion was confirmed using our real-time polymerase chain reaction (PCR) assay and deletion-specific PCR reactions using junction fragment primers. We detected large deletions in eight patients (16%). These eight CF alleles belong to four different deletion types (CFTRindel2, CFTRdele14b-17b, CFTRdele17a-17b and CFTRdele 2-9) whereof the last is novel. Comparing detailed clinical data of all these patients with CF and the molecular genetic findings, we were able to elaborate criteria for deletion screenings and possible genotype-phenotype associations. In conclusion, we agree with other authors that deletion screenings should be implemented in routine genetic diagnostics of CF.
Resumo:
When a child is not following the normal, predicted growth curve, an evaluation for underlying illness and central nervous system abnormalities is required and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency. This article focuses on the GH gene, the various gene alterations, and their possible impact on the pituitary gland. Transcription factors regulating pituitary gland development may cause multiple pituitary hormone deficiency but may present initially as GH deficiency. The role of two most important transcription factors, POU1F1 (Pit-1) and PROP 1, is discussed.
Resumo:
A nonfluorescent low-cost, low-density oligonucleotide array was designed for detecting the whole coronavirus genus after reverse transcription (RT)-PCR. The limit of detection was 15.7 copies/reaction. The clinical detection limit in patients with severe acute respiratory syndrome was 100 copies/sample. In 39 children suffering from coronavirus 229E, NL63, OC43, or HKU1, the sensitivity was equal to that of individual real-time RT-PCRs.
Resumo:
Sitosterolaemia is a rare autosomal recessive disease characterized by increased intestinal absorption of plant sterols, decreased hepatic excretion into bile and elevated concentrations in plasma phytosterols. Homozygous or compound heterozygous loss of function mutations in either of the ATP-binding cassette (ABC) proteins ABCG5 and ABCG8 explain the increased absorption of plant sterols. Here we report a Swiss index patient with sitosterolaemia, who presented with the classical symptoms of xanthomas, but also had mitral and aortic valvular heart disease. Her management over the last 20 years included a novel therapeutic approach of high-dose cholesterol feeding that was semi-effective. Mutational and extended haplotype analyses showed that our patient shared this haplotype with that of the Amish-Mennonite sitosterolaemia patients, indicating they are related ancestrally.