153 resultados para Respiratory Gating
A prospective study of the impact of air pollution on respiratory symptoms and infections in infants
Resumo:
Rationale: There is increasing evidence that short-term exposure to air pollution has a detrimental effect on respiratory health, but data from healthy populations, particularly infants, are scarce. Objectives: To assess the association of air pollution with frequency and severity of respiratory symptoms and infections measured weekly in healthy infants. Methods: In a prospective birth cohort of 366 infants of unselected mothers, respiratory health was assessed weekly by telephone interviews during the first year of life (19,106 total observations). Daily mean levels of particulate matter (PM10), nitrogen dioxide (NO2), and ozone (O3) were obtained from local monitoring stations. We determined the association of the preceding week's pollutant levels with symptom scores and respiratory tract infections using a generalized additive mixed model with an autoregressive component. In addition, we assessed whether neonatal lung function influences this association and whether duration of infectious episodes differed between weeks with normal PM10 and weeks with elevated levels. Measurements and Main Results: We found a significant association between air pollution and respiratory symptoms, particularly in the week after respiratory tract infections (risk ratio, 1.13 [1.02-1.24] per 10 μg/m(3) PM10 levels) and in infants with premorbid lung function. During times of elevated PM10 (>33.3 μg/m(3)), duration of respiratory tract infections increased by 20% (95% confidence interval, 2-42%). Conclusions: Exposure to even moderate levels of air pollution was associated with increased respiratory symptoms in healthy infants. Particularly in infants with premorbid lung function and inflammation, air pollution contributed to longer duration of infectious episodes with a potentially large socioeconomic impact.
Resumo:
Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.
Resumo:
High altitude periodic breathing (PB) shares some common pathophysiologic aspects with sleep apnea, Cheyne-Stokes respiration and PB in heart failure patients. Methods that allow quantifying instabilities of respiratory control provide valuable insights in physiologic mechanisms and help to identify therapeutic targets. Under the hypothesis that high altitude PB appears even during physical activity and can be identified in comparison to visual analysis in conditions of low SNR, this study aims to identify PB by characterizing the respiratory pattern through the respiratory volume signal. A number of spectral parameters are extracted from the power spectral density (PSD) of the volume signal, derived from respiratory inductive plethysmography and evaluated through a linear discriminant analysis. A dataset of 34 healthy mountaineers ascending to Mt. Muztagh Ata, China (7,546 m) visually labeled as PB and non periodic breathing (nPB) is analyzed. All climbing periods within all the ascents are considered (total climbing periods: 371 nPB and 40 PB). The best crossvalidated result classifying PB and nPB is obtained with Pm (power of the modulation frequency band) and R (ratio between modulation and respiration power) with an accuracy of 80.3% and area under the receiver operating characteristic curve of 84.5%. Comparing the subjects from 1(st) and 2(nd) ascents (at the same altitudes but the latter more acclimatized) the effect of acclimatization is evaluated. SaO(2) and periodic breathing cycles significantly increased with acclimatization (p-value < 0.05). Higher Pm and higher respiratory frequencies are observed at lower SaO(2), through a significant negative correlation (p-value < 0.01). Higher Pm is observed at climbing periods visually labeled as PB with > 5 periodic breathing cycles through a significant positive correlation (p-value < 0.01). Our data demonstrate that quantification of the respiratory volume signal using spectral analysis is suitable to identify effects of hypobaric hypoxia on control of breathing.
Resumo:
This study investigated whether the epidemiology of penicillin-non-susceptible pneumococci (PNSP) colonising small children correlated with the biannual epidemic activity of respiratory syncytial virus (RSV). Colonisation rates and the prevalence of PNSP among paediatric outpatients aged < 5 years was analysed between January 1998 and September 2003 using an established national surveillance network. Resistance trends were investigated using time-series analysis to assess the correlation with the biannual pattern of RSV infections and national sales of oral paediatric formulations of antibiotics and antibiotic prescriptions to children aged < 5 years for acute respiratory tract infections. PNSP rates exhibited a biannual cycle in phase with the biannual seasonal RSV epidemics (p < 0.05). Resistance rates were higher during the winter seasons of 1998-1999 (20.1%), 2000-2001 (16.0%) and 2002-2003 (19.1%), compared with the winter seasons of 1997-1998 (8.2%), 1999-2000 (11.6%) and 2001-2002 (9.5%). Antibiotic sales and prescriptions showed regular peaks during each winter, with no significant correlation with the biannual pattern of RSV activity and seasonal trends of PNSP. RSV is an important determinant of the spread of PNSP and must be considered in strategies aimed at antimicrobial resistance control.
Resumo:
As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.
Resumo:
RATIONALE: Exhaled nitric oxide (NO) is a well-known marker of established airway inflammation in asthma. Its role in the disease process before the onset of respiratory symptoms remains unclear. Objectives: To examine whether elevated NO in newborns with clinically naive airways is associated with subsequent respiratory symptoms in infancy. METHODS: We measured exhaled NO concentration and output after birth and prospectively assessed respiratory symptoms during infancy in a birth cohort of 164 unselected healthy neonates. We examined a possible association between NO and respiratory symptoms using Poisson regression analysis. RESULTS: In infants of atopic mothers, elevated NO levels after birth were associated with increased risk of subsequent respiratory symptoms (risk ratio [RR], 7.5; 95% confidence interval [CI], 1.7-32.4 for each nl/s increase in NO output; p = 0.007). Similarly, a positive association between NO and symptoms was seen in infants of smoking mothers (RR, 6.6; 95% CI, 2.3-19.3; p = 0.001), with the strongest association in infants whose mothers had both risk factors (RR, 21.8; 95% CI, 5.8-81.3; p < 0.001). CONCLUSIONS: The interaction of NO with maternal atopy and smoking on subsequent respiratory symptoms is present early in life. Clinically, noninvasive NO measurements in newborns may prove useful as a new means to identify high-risk infants. Future confirmation of a role for NO metabolism in the evolution of respiratory disease may provide an avenue for preventative strategies.
Resumo:
BACKGROUND: Many studies showing effects of traffic-related air pollution on health rely on self-reported exposure, which may be inaccurate. We estimated the association between self-reported exposure to road traffic and respiratory symptoms in preschool children, and investigated whether the effect could have been caused by reporting bias. METHODS: In a random sample of 8700 preschool children in Leicestershire, UK, exposure to road traffic and respiratory symptoms were assessed by a postal questionnaire (response rate 80%). The association between traffic exposure and respiratory outcomes was assessed using unconditional logistic regression and conditional regression models (matching by postcode). RESULTS: Prevalence odds ratios (95% confidence intervals) for self-reported road traffic exposure, comparing the categories 'moderate' and 'dense', respectively, with 'little or no' were for current wheezing: 1.26 (1.13-1.42) and 1.30 (1.09-1.55); chronic rhinitis: 1.18 (1.05-1.31) and 1.31 (1.11-1.56); night cough: 1.17 (1.04-1.32) and 1.36 (1.14-1.62); and bronchodilator use: 1.20 (1.04-1.38) and 1.18 (0.95-1.46). Matched analysis only comparing symptomatic and asymptomatic children living at the same postcode (thus exposed to similar road traffic) showed similar ORs, suggesting that parents of children with respiratory symptoms reported more road traffic than parents of asymptomatic children. CONCLUSIONS: Our study suggests that reporting bias could explain some or even all the association between reported exposure to road traffic and disease. Over-reporting of exposure by only 10% of parents of symptomatic children would be sufficient to produce the effect sizes shown in this study. Future research should be based only on objective measurements of traffic exposure.
Resumo:
BACKGROUND: Particulate matter <10 mum (PM(10)) from fossil fuel combustion is associated with an increased prevalence of respiratory symptoms in children and adolescents. However, the effect of PM(10) on respiratory symptoms in young children is unclear. METHODS: The association between primary PM(10) (particles directly emitted from local sources) and the prevalence and incidence of respiratory symptoms was studied in a random sample cohort of 4400 Leicestershire children aged 1-5 years surveyed in 1998 and again in 2001. Annual exposure to primary PM(10) was calculated for the home address using the Airviro dispersion model and adjusted odds ratios (ORS) and 95% confidence intervals were calculated for each microg/m(3) increase. RESULTS: Exposure to primary PM(10) was associated with the prevalence of cough without a cold in both 1998 and 2001, with adjusted ORs of 1.21 (1.07 to 1.38) and 1.56 (1.32 to 1.84) respectively. For night time cough the ORs were 1.06 (0.94 to 1.19) and 1.25 (1.06 to 1.47), and for current wheeze 0.99 (0.88 to 1.12) and 1.28 (1.04 to 1.58), respectively. There was also an association between primary PM(10) and new onset symptoms. The ORs for incident symptoms were 1.62 (1.31 to 2.00) for cough without a cold and 1.42 (1.02 to 1.97) for wheeze. CONCLUSION: In young children there was a consistent association between locally generated primary PM(10) and the prevalence and incidence of cough without a cold and the incidence of wheeze which was independent of potential confounders.
Resumo:
Waterproofing agents are widely used to protect leather and textiles in both domestic and occupational activities. An outbreak of acute respiratory syndrome following exposure to waterproofing sprays occurred during the winter 2002-2003 in Switzerland. About 180 cases were reported by the Swiss Toxicological Information Centre between October 2002 and March 2003, whereas fewer than 10 cases per year had been recorded previously. The reported cases involved three brands of sprays containing a common waterproofing mixture, that had undergone a formulation change in the months preceding the outbreak. A retrospective analysis was undertaken in collaboration with the Swiss Toxicological Information Centre and the Swiss Registries for Interstitial and Orphan Lung Diseases to clarify the circumstances and possible causes of the observed health effects. Individual exposure data were generated with questionnaires and experimental emission measurements. The collected data was used to conduct numeric simulation for 102 cases of exposure. A classical two-zone model was used to assess the aerosol dispersion in the near- and far-field during spraying. The resulting assessed dose and exposure levels obtained were spread on large scales, of several orders of magnitude. No dose-response relationship was found between exposure indicators and health effects indicators (perceived severity and clinical indicators). Weak relationships were found between unspecific inflammatory response indicators (leukocytes, C-reactive protein) and the maximal exposure concentration. The results obtained disclose a high interindividual response variability and suggest that some indirect mechanism(s) predominates in the respiratory disease occurrence. Furthermore, no threshold could be found to define a safe level of exposure. These findings suggest that the improvement of environmental exposure conditions during spraying alone does not constitute a sufficient measure to prevent future outbreaks of waterproofing spray toxicity. More efficient preventive measures are needed prior to the marketing and distribution of new waterproofing agents.
Resumo:
BACKGROUND: The time course of impairment of respiratory mechanics and gas exchange in the acute respiratory distress syndrome (ARDS) remains poorly defined. We assessed the changes in respiratory mechanics and gas exchange during ARDS. We hypothesized that due to the changes in respiratory mechanics over time, ventilatory strategies based on rigid volume or pressure limits might fail to prevent overdistension throughout the disease process. METHODS: Seventeen severe ARDS patients {PaO2/FiO2 10.1 (9.2-14.3) kPa; 76 (69-107) mmHg [median (25th-75th percentiles)] and bilateral infiltrates} were studied during the acute, intermediate, and late stages of ARDS (at 1-3, 4-6 and 7 days after diagnosis). Severity of lung injury, gas exchange, and hemodynamics were assessed. Pressure-volume (PV) curves of the respiratory system were obtained, and upper and lower inflection points (UIP, LIP) and recruitment were estimated. RESULTS: (1) UIP decreased from early to established (intermediate and late) ARDS [30 (28-30) cmH2O, 27 (25-30) cmH2O and 25 (23-28) cmH2O (P=0.014)]; (2) oxygenation improved in survivors and in patients with non-pulmonary etiology in late ARDS, whereas all patients developed hypercapnia from early to established ARDS; and (3) dead-space ventilation and pulmonary shunt were larger in patients with pulmonary etiology during late ARDS. CONCLUSION: We found a decrease in UIP from acute to established ARDS. If applied to our data, the inspiratory pressure limit advocated by the ARDSnet (30 cmH2O) would produce ventilation over the UIP, with a consequent increased risk of overdistension in 12%, 43% and 65% of our patients during the acute, intermediate and late phases of ARDS, respectively. Lung protective strategies based on fixed tidal volume or pressure limits may thus not fully avoid the risk of lung overdistension throughout ARDS.
Resumo:
OBJECTIVE: To evaluate pulmonary and cardiovascular effects of a recruitment maneuver (RM) combined with positive end-expiratory pressure (PEEP) during total intravenous anesthesia in ponies. ANIMALS: 6 healthy adult Shetland ponies. PROCEDURE: After premedication with detomidine (10 microg/kg, IV), anesthesia was induced with climazolam (0.06 mg/kg, IV) and ketamine (2.2 mg/kg, IV) and maintained with a constant rate infusion of detomidine (0.024 mg/kg/h), climazolam (0.036 mg/kg/h), and ketamine (2.4 mg/kg/h). The RM was preceded by an incremental PEEP titration and followed by a decremental PEEP titration, both at a constant airway pressure difference (deltaP) of 20 cm H2O. The RM consisted of a stepwise increase in deltaP by 25, 30, and 35 cm H2O obtained by increasing peak inspiratory pressure (PIP) to 45, 50, and 55 cm H2O, while maintaining PEEP at 20 cm H2O. Hemodynamic and pulmonary variables were analyzed at every step of the PEEP titration-RM. RESULTS: During the PEEP titration-RM, there was a significant increase in PaO 2 (+12%), dynamic compliance (+ 62%), and heart rate (+17%) and a decrease in shunt (-19%) and mean arterial blood pressure (-21%) was recorded. Cardiac output remained stable. CONCLUSIONS AND CLINICAL RELEVANCE: Although baseline oxygenation was high, Pa(O2) and dynamic compliance further increased during the RM. Despite the use of high PIP and PEEP and a high tidal volume, limited cardiovascular compromise was detected. A PEEP titration-RM may be used to improve oxygenation in anesthetized ponies. During stable hemodynamic conditions, PEEP titration-RM can be performed with acceptable adverse cardiovascular effects.
Resumo:
Cyclical recruitment of atelectasis with each breath is thought to contribute to ventilator-associated lung injury. Extrinsic positive end-expiratory pressure (PEEPe) can maintain alveolar recruitment at end exhalation, but PEEPe depresses cardiac output and increases overdistension. Short exhalation times can also maintain end-expiratory recruitment, but if the mechanism of this recruitment is generation of intrinsic PEEP (PEEPi), there would be little advantage compared with PEEPe. In seven New Zealand White rabbits, we compared recruitment from increased respiratory rate (RR) to recruitment from increased PEEPe after saline lavage. Rabbits were ventilated in pressure control mode with a fraction of inspired O(2) (Fi(O(2))) of 1.0, inspiratory-to-expiratory ratio of 2:1, and plateau pressure of 28 cmH(2)O, and either 1) high RR (24) and low PEEPe (3.5) or 2) low RR (7) and high PEEPe (14). We assessed cyclical lung recruitment with a fast arterial Po(2) probe, and we assessed average recruitment with blood gas data. We measured PEEPi, cardiac output, and mixed venous saturation at each ventilator setting. Recruitment achieved by increased RR and short exhalation time was nearly equivalent to recruitment achieved by increased PEEPe. The short exhalation time at increased RR, however, did not generate PEEPi. Cardiac output was increased on average 13% in the high RR group compared with the high PEEPe group (P < 0.001), and mixed venous saturation was consistently greater in the high RR group (P < 0.001). Prevention of end-expiratory derecruitment without increased end-expiratory pressure suggests that another mechanism, distinct from intrinsic PEEP, plays a role in the dynamic behavior of atelectasis.
Resumo:
This paper is the fourth in a series of reviews that will summarize available data and critically discuss the potential role of lung-function testing in infants with acute neonatal respiratory disorders and chronic lung disease of infancy. The current paper addresses information derived from tidal breathing measurements within the framework outlined in the introductory paper of this series, with particular reference to how these measurements inform on control of breathing. Infants with acute and chronic respiratory illness demonstrate differences in tidal breathing and its control that are of clinical consequence and can be measured objectively. The increased incidence of significant apnea in preterm infants and infants with chronic lung disease, together with the reportedly increased risk of sudden unexplained death within the latter group, suggests that control of breathing is affected by both maturation and disease. Clinical observations are supported by formal comparison of tidal breathing parameters and control of breathing indices in the research setting.