67 resultados para Recurrence quantification analysis
Resumo:
A protein of a biological sample is usually quantified by immunological techniques based on antibodies. Mass spectrometry offers alternative approaches that are not dependent on antibody affinity and avidity, protein isoforms, quaternary structures, or steric hindrance of antibody-antigen recognition in case of multiprotein complexes. One approach is the use of stable isotope-labeled internal standards; another is the direct exploitation of mass spectrometric signals recorded by LC-MS/MS analysis of protein digests. Here we assessed the peptide match score summation index based on probabilistic peptide scores calculated by the PHENYX protein identification engine for absolute protein quantification in accordance with the protein abundance index as proposed by Mann and co-workers (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245). Using synthetic protein mixtures, we demonstrated that this approach works well, although proteins can have different response factors. Applied to high density lipoproteins (HDLs), this new approach compared favorably to alternative protein quantitation methods like UV detection of protein peaks separated by capillary electrophoresis or quantitation of protein spots on SDS-PAGE. We compared the protein composition of a well defined HDL density class isolated from plasma of seven hypercholesterolemia subjects having low or high HDL cholesterol with HDL from nine normolipidemia subjects. The quantitative protein patterns distinguished individuals according to the corresponding concentration and distribution of cholesterol from serum lipid measurements of the same samples and revealed that hypercholesterolemia in unrelated individuals is the result of different deficiencies. The presented approach is complementary to HDL lipid analysis; does not rely on complicated sample treatment, e.g. chemical reactions, or antibodies; and can be used for projective clinical studies of larger patient groups.
Resumo:
Magnetic resonance imaging of inhaled fluorinated inert gases ((19)F-MRI) such as sulfur hexafluoride (SF(6)) allows for analysis of ventilated air spaces. In this study, the possibility of using this technique to image lung function was assessed. For this, (19)F-MRI of inhaled SF(6) was compared with respiratory gas analysis, which is a global but reliable measure of alveolar gas fraction. Five anesthetized pigs underwent multiple-breath wash-in procedures with a gas mixture of 70% SF(6) and 30% oxygen. Two-dimensional (19)F-MRI and end-expiratory gas fraction analysis were performed after 4 to 24 inhaled breaths. Signal intensity of (19)F-MRI and end-expiratory SF(6) fraction were evaluated with respect to linear correlation and reproducibility. Time constants were estimated by both MRI and respiratory gas analysis data and compared for agreement. A good linear correlation between signal intensity and end-expiratory gas fraction was found (correlation coefficient 0.99+/-0.01). The data were reproducible (standard error of signal intensity 8% vs. that of gas fraction 5%) and the comparison of time constants yielded a sufficient agreement. According to the good linear correlation and the acceptable reproducibility, we suggest the (19)F-MRI to be a valuable tool for quantification of intrapulmonary SF(6) and hence lung function.
Resumo:
BACKGROUND: Extracapsular tumor spread (ECS) has been identified as a possible risk factor for breast cancer recurrence, but controversy exists regarding its role in decision making for regional radiotherapy. This study evaluates ECS as a predictor of local, axillary, and supraclavicular recurrence. PATIENTS AND METHODS: International Breast Cancer Study Group Trial VI accrued 1475 eligible pre- and perimenopausal women with node-positive breast cancer who were randomly assigned to receive three to nine courses of classical combination chemotherapy with cyclophosphamide, methotrexate, and fluorouracil. ECS status was determined retrospectively in 933 patients based on review of pathology reports. Cumulative incidence and hazard ratios (HRs) were estimated using methods for competing risks analysis. Adjustment factors included treatment group and baseline patient and tumor characteristics. The median follow-up was 14 years. RESULTS: In univariable analysis, ECS was significantly associated with supraclavicular recurrence (HR = 1.96; 95% confidence interval 1.23-3.13; P = 0.005). HRs for local and axillary recurrence were 1.38 (P = 0.06) and 1.81 (P = 0.11), respectively. Following adjustment for number of lymph node metastases and other baseline prognostic factors, ECS was not significantly associated with any of the three recurrence types studied. CONCLUSIONS: Our results indicate that the decision for additional regional radiotherapy should not be based solely on the presence of ECS.
Resumo:
ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to lipid-poor HDL and maintains cellular lipid homeostasis. Impaired ABCA1 function plays a role in lipid disorders, cardiovascular disease, atherosclerosis, and metabolic disorders. Despite the clinical importance of ABCA1, no method is available for quantifying ABCA1 protein. We developed a sensitive indirect competitive ELISA for measuring ABCA1 protein in human tissues using a commercial ABCA1 peptide and a polyclonal anti-ABCA1 antibody. The ELISA has a detection limit of 8 ng/well (0.08 mg/l) with a working range of 9-1000 ng/well (0.09-10 mg/l). Intra- and interassay coefficient of variations (CVs) were 6.4% and 9.6%, respectively. Good linearity (r = 0.97-0.99) was recorded in serial dilutions of human arterial and placental crude membrane preparations, and fibroblast lysates. The ELISA measurements for ABCA1 quantification in reference arterial tissues corresponded well with immunoblot analysis. The assay performance and clinical utility was evaluated with arterial tissues obtained from 15 controls and 44 patients with atherosclerotic plaques. ABCA1 protein concentrations in tissue lysates were significantly lower in patients (n = 24) as compared with controls (n = 5; 9.37 +/- 0.82 vs. 17.03 +/- 4.25 microg/g tissue; P < 0.01). The novel ELISA enables the quantification of ABCA1 protein in human tissues and confirms previous semiquantitative immunoblot results.
Resumo:
INTRODUCTION: In this prospective study we set out to investigate the diagnostic value of [(11)C]choline-PET/CT in patients with suspected lymph node metastases before salvage lymph node dissection. PATIENTS AND METHODS: 15 consecutive patients with rising PSA underwent [(11)C]choline-PET/CT and consecutive open salvage pelvic/retroperitoneal extended lymph node dissection due to uptake of [(11)C]choline in at least 1 lymph node. Mean age was 62.1 (range 53-73). RESULTS: [(11)C]choline-PET/CT results were compared with the histopathology reports and clinical follow-up (mean 13.7 months, range 6-24). Mean time to progression was 23.6 months (range 4-81). [(11)C]choline uptake was observed in nodes along the external and internal and common iliac arteries and in the paraaortic region. A positive histology was reported in 8/15 patients. Only one patient had a PSA nadir of <0.1 ng/ml after salvage surgery. Another patient had stable disease with a PSA of 0.5 ng/ml. Three patients developed bone metastases during follow-up. CONCLUSIONS: This interim analysis indicates that [(11)C]choline-PET/CT may be a useful technique in detection of lymph node metastases when rising PSA occurs after definite prostate cancer therapy. The presented cohort is limited in size, but there is still strong evidence that the patients benefit from [(11)C]choline-PET/CT and consecutive salvage lymph node dissection is rather small.
Resumo:
OBJECTIVE: It has been suggested that chondrocyte death by apoptosis may play a role in the pathogenesis of cartilage destruction in osteoarthritis, but the results of in-vivo and in-vitro investigations have been conflicting. To investigate further the cell death in our in-vitro model for traumatic joint injury, we performed a quantitative analysis by electron microscopy (EM) of cell morphology after injurious compression. For comparison, the TUNEL assay was also performed. DESIGN: Articular cartilage explant disks were harvested from newborn calf femoropatellar groove. The disks were subjected to injurious compression (50% strain at a strain rate of 100%/s), incubated for 3 days, and then fixed for quantitative morphological analysis. RESULTS: By TUNEL, the cell apoptosis rate increased from 7 +/- 2% in unloaded controls to 33 +/- 6% after injury (P=0.01; N=8 animals). By EM, the apoptosis rate increased from 5 +/- 1% in unloaded controls to 62 +/- 10% in injured cartilage (P=0.02, N=5 animals). Analysis by EM also identified that of the dead cells in injured disks, 97% were apoptotic by morphology. CONCLUSIONS: These results confirm a significant increase in cell death after injurious compression and suggest that most cell death observed here was by an apoptotic process.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Resumo:
BACKGROUND: Solitary skin nodules composed of pleomorphic T lymphocytes are often the source of diagnostic problems. OBJECTIVE: To characterize the clinicopathological features, prognosis and optimal treatment modalities of patients with solitary lymphoid nodules of small- to medium-sized pleomorphic T lymphocytes. METHODS: Twenty-six patients were analysed for clinical, histopathological, immunophenotypical, molecular and follow-up data. Results: Lesions were located mainly on the head and neck (n = 16; 61.5%) or trunk (n = 8; 30.8%). Histopathology showed non-epidermotropic nodular or diffuse infiltrates of small- to medium-sized pleomorphic T lymphocytes. Monoclonality was found by PCR in 54.2% of cases (n = 13/24). After a mean follow-up of 79.7 months, a local recurrence could be observed only in 1 patient. CONCLUSIONS: Our patients have a specific cutaneous lymphoproliferative disorder characterized by reproducible clinicopathological features. The incongruity between the indolent clinical course and the worrying histopathological features poses difficulties in classifying these cases unambiguously as benign or malignant. We suggest to describe these lesions as 'solitary small- to medium-sized pleomorphic T-cell nodules of undetermined significance'. Irrespective of the name given to these equivocal cutaneous lymphoid proliferations, follow-up data support a non-aggressive therapeutic strategy.
Resumo:
Methylation of cytosine residues at CpG sites is involved in various biological processes to control gene regulation and gene expression. Global DNA methylation is changed in different tumors and in cloned animals. Global DNA methylation can be accurately quantified by dot blot analysis with infrared (IR) fluorophores. Methylated lambda DNA was used as model DNA to develop and validate an immunochemical assay with IR fluorescence detection. Two different IR fluorophores were used, one to detect 5-methylcytosine and another to account for DNA loading. A sensitive infrared detection method was established which is suitable for accurate and reproducible quantification of global DNA methylation across a wide dynamic range. This method was subsequently employed to quantify global DNA methylation in liver and in muscle tissues of boars which have received either a control diet or a methyl supplemented diet in an ongoing study. A significant difference in global DNA methylation is indicated in muscle but not in liver tissue between the two groups of boars.
Resumo:
Mycoplasma conjunctivae, the causative agent of infectious keratoconjunctivitis (IKC), was recently detected in asymptomatic Alpine ibex (Capra ibex ibex). This suggested that an external source of infection may not be required for an IKC outbreak in wildlife but might be initiated by healthy carriers, which contradicted previous serologic investigations in chamois. Our aims were to 1) assess the prevalence of M. conjunctivae among asymptomatic ibex and Alpine chamois (Rupicapra rupicapra rupicapra) and its frequency in IKC-affected animals, 2) determine mycoplasma loads in different disease stages, and 3) characterize the M. conjunctivae strains involved. Eye swabs from 654 asymptomatic and 204 symptomatic animals were collected in diverse Swiss regions between 2008 and 2010, and tested by TaqMan real-time PCR. Data analysis was performed considering various patterns of IKC occurrence in the respective sampling regions. Strains from 24 animals were compared by cluster analysis. Prevalence of M. conjunctivae was 5.6% (95% confidence interval [CI]: 3.7-8.1%) in asymptomatic ibex and 5.8% (CI: 3.0-9.9%) in asymptomatic chamois, with significant differences between years and regions in both species. Detection frequency in symptomatic animals was significantly higher during IKC outbreaks than in nonepidemic situations (i.e., regular but low incidence or sporadic occurrence). Mycoplasma load was significantly lower in eyes from healthy carriers and animals with mild signs than from animals with moderate and severe signs. Although some strains were found in both asymptomatic and diseased animals of the same species, others apparently differed in their pathogenic potential depending on the infected species. Overall, we found a widespread occurrence of M. conjunctivae in wild Caprinae with and without IKC signs. Our results confirm the central role of M. conjunctivae in outbreaks but suggest that other infectious agents may be involved in IKC cases in nonepidemic situations. Additionally, presence and severity of signs are related to the quantity of M. conjunctivae in the eyes rather than to the strain. We propose that individual or environmental factors influence the clinical expression of the disease and that persistence of M. conjunctivae in populations of wild Caprinae cannot be excluded.
Resumo:
BACKGROUND The objective of this study was to assess the incidence and impact of asymptomatic arrhythmia in patients with highly symptomatic atrial fibrillation (AF) who qualified for radiofrequency (RF) catheter ablation. METHODS AND RESULTS In this prospective study, 114 patients with at least 3 documented AF episodes together with corresponding symptoms and an ineffective trial of at least 1 antiarrhythmic drug were selected for RF ablation. With the use of CARTO, circumferential lesions around the pulmonary veins and linear lesions at the roof of the left atrium and along the left atrial isthmus were placed. A continuous, 7-day, Holter session was recorded before ablation, right after ablation, and after 3, 6, and 12 months of follow-up. During each 7-day Holter monitoring, the patients recorded quality and duration of any complaints by using a detailed symptom log. More than 70,000 hours of ECG recording were analyzed. In the 7-day Holter records before ablation, 92 of 114 patients (81%) had documented AF episodes. All episodes were symptomatic in 35 patients (38%). In 52 patients (57%), both symptomatic and asymptomatic episodes were recorded, whereas in 5 patients (5%), all documented AF episodes were asymptomatic. After ablation, the percentage of patients with only asymptomatic AF recurrences increased to 37% (P<0.05) at the 6-month follow-up. An analysis of patient characteristics and arrhythmia patterns failed to identify a specific subset who were at high risk for the development of asymptomatic AF. CONCLUSIONS Even in patients presenting with highly symptomatic AF, asymptomatic episodes may occur and significantly increase after catheter ablation. A symptom-only-based follow-up would substantially overestimate the success rate. Objective measures such as long-term Holter monitoring are needed to identify asymptomatic AF recurrences after ablation.
Resumo:
Because of the large variability in the pharmacokinetics of anti-HIV drugs, therapeutic drug monitoring in patients may contribute to optimize the overall efficacy and safety of antiretroviral therapy. An LC–MS/MS method for the simultaneous assay in plasma of the novel antiretroviral agents rilpivirine (RPV) and elvitegravir (EVG) has been developed to that endeavor. Plasma samples (100 μL) extraction is performed by protein precipitation with acetonitrile, and the supernatant is subsequently diluted 1:1 with 20-mM ammonium acetate/MeOH 50:50. After reverse-phase chromatography, quantification of RPV and EVG, using matrix-matched calibration samples, is performed by electrospray ionization–triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The stable isotopic-labeled compounds RPV-13C6 and EVG-D6 were used as internal standards. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<6.4%), as well as EVG and RPV short and long-term stability in plasma. Calibration curves were validated over the clinically relevant concentrations ranging from 5 to 2500 ng/ml for RPV and from 50 to 5000 ng/ml for EVG. The method is precise (inter-day CV%: 3–6.3%) and accurate (3.8–7.2%). Plasma samples were found to be stable (<15%) in all considered conditions (RT/48 h, +4°C/48 h, −20°C/3 months and 60°C/1 h). Selected metabolite profiles analysis in patients' samples revealed the presence of EVG glucuronide, that was well separated from parent EVG, allowing to exclude potential interferences through the in-source dissociation of glucuronide to parent drug. This new, rapid and robust LCMS/MS assay for the simultaneous quantification of plasma concentrations of these two major new anti-HIV drugs EVG and RPV offers an efficient analytical tool for clinical pharmacokinetics studies and routine therapeutic drug monitoring service.
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.
Resumo:
The objective of this study was to determine if area measurements of pleural fluid on computed tomography (CT) reflect the actual pleural fluid volume (PEvol) as measured at autopsy, to establish a formula to estimate the volume of pleural effusion (PEest), and to test the accuracy and observer reliability of PEest.132 human cadavers, with pleural effusion were divided into phase 1 (n = 32) and phase 2 (n = 100). In phase 1, PEvol was compared to area measurements on axial (axA), sagittal (sagA), and coronal (corA) CT images. Linear regression analysis was used to create a formula to calculate PEest. In phase 2, intra-class correlation (ICC) was used to assess inter-reader reliability and determine the agreement between PEest and PEvol. PEvol correlated to a higher degree to axA (r s mean = 0.738; p < 0.001) than to sagA (r s mean = 0.679, p < 0.001) and corA (r s mean = 0.709; p < 0.001). PEest can be established with the following formula: axA × 0.1 = PEest. Mean difference between PEest and PEvol was less than 40 mL (ICC = 0.837-0.874; p < 0.001). Inter-reader reliability was higher between two experienced readers (ICC = 0.984-0.987; p < 0.001) than between an inexperienced reader and both experienced readers (ICC = 0.660-0.698; p < 0.001). Pleural effusions may be quantified in a rapid, reliable, and reasonably accurate fashion using single area measurements on CT.
Resumo:
PURPOSE Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). METHODS A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. RESULTS Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P < 0.0001). Fluorescence lifetimes increased with age. CONCLUSIONS The FLIO allows reproducible measurements of fluorescence lifetimes of the macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.