41 resultados para Reader Response approach


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of efficient hydrological risk mitigation strategies and their subsequent implementation relies on a careful vulnerability analysis of the elements exposed. Recently, extensive research efforts were undertaken to develop and refine empirical relationships linking the structural vulnerability of buildings to the impact forces of the hazard processes. These empirical vulnerability functions allow estimating the expected direct losses as a result of the hazard scenario based on spatially explicit representation of the process patterns and the elements at risk classified into defined typological categories. However, due to the underlying empiricism of such vulnerability functions, the physics of the damage-generating mechanisms for a well-defined element at risk with its peculiar geometry and structural characteristics remain unveiled, and, as such, the applicability of the empirical approach for planning hazard-proof residential buildings is limited. Therefore, we propose a conceptual assessment scheme to close this gap. This assessment scheme encompasses distinct analytical steps: modelling (a) the process intensity, (b) the impact on the element at risk exposed and (c) the physical response of the building envelope. Furthermore, these results provide the input data for the subsequent damage evaluation and economic damage valuation. This dynamic assessment supports all relevant planning activities with respect to a minimisation of losses, and can be implemented in the operational risk assessment procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field of animal syndromic surveillance (SyS) is growing, with many systems being developed worldwide. Now is an appropriate time to share ideas and lessons learned from early SyS design and implementation. Based on our practical experience in animal health SyS, with additions from the public health and animal health SyS literature, we put forward for discussion a 6-step approach to designing SyS systems for livestock and poultry. The first step is to formalise policy and surveillance goals which are considerate of stakeholder expectations and reflect priority issues (1). Next, it is important to find consensus on national priority diseases and identify current surveillance gaps. The geographic, demographic, and temporal coverage of the system must be carefully assessed (2). A minimum dataset for SyS that includes the essential data to achieve all surveillance objectives while minimizing the amount of data collected should be defined. One can then compile an inventory of the data sources available and evaluate each using the criteria developed (3). A list of syndromes should then be produced for all data sources. Cases can be classified into syndrome classes and the data can be converted into time series (4). Based on the characteristics of the syndrome-time series, the length of historic data available and the type of outbreaks the system must detect, different aberration detection algorithms can be tested (5). Finally, it is essential to develop a minimally acceptable response protocol for each statistical signal produced (6). Important outcomes of this pre-operational phase should be building of a national network of experts and collective action and evaluation plans. While some of the more applied steps (4 and 5) are currently receiving consideration, more emphasis should be put on earlier conceptual steps by decision makers and surveillance developers (1-3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Deep molecular response (MR(4.5)) defines a subgroup of patients with chronic myeloid leukemia (CML) who may stay in unmaintained remission after treatment discontinuation. It is unclear how many patients achieve MR(4.5) under different treatment modalities and whether MR(4.5) predicts survival. PATIENTS AND METHODS Patients from the randomized CML-Study IV were analyzed for confirmed MR(4.5) which was defined as ≥ 4.5 log reduction of BCR-ABL on the international scale (IS) and determined by reverse transcriptase polymerase chain reaction in two consecutive analyses. Landmark analyses were performed to assess the impact of MR(4.5) on survival. RESULTS Of 1,551 randomly assigned patients, 1,524 were assessable. After a median observation time of 67.5 months, 5-year overall survival (OS) was 90%, 5-year progression-free-survival was 87.5%, and 8-year OS was 86%. The cumulative incidence of MR(4.5) after 9 years was 70% (median, 4.9 years); confirmed MR(4.5) was 54%. MR(4.5) was reached more quickly with optimized high-dose imatinib than with imatinib 400 mg/day (P = .016). Independent of treatment approach, confirmed MR(4.5) at 4 years predicted significantly higher survival probabilities than 0.1% to 1% IS, which corresponds to complete cytogenetic remission (8-year OS, 92% v 83%; P = .047). High-dose imatinib and early major molecular remission predicted MR(4.5). No patient with confirmed MR(4.5) has experienced progression. CONCLUSION MR(4.5) is a new molecular predictor of long-term outcome, is reached by a majority of patients treated with imatinib, and is achieved more quickly with optimized high-dose imatinib, which may provide an improved therapeutic basis for treatment discontinuation in CML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Main objective of the game is to increase the coping capacity of players and familiarise them with the Integrated Disaster Reduction Approach. The game is intended to prepare for and introduce the players to a subsequent Learning for Sustainability capacity building workshop for community leaders. The game represents a typical emergency situation resulting from a natural disaster. Before and after the event, adequate measures help to prevent or minimise potential damages. Once a disaster has occurred, concerted actions and immediate measures need to be taken to rescue as much as possible (human lives, livestock, material) and safeguard the village against further damage and losses. In the course of the game, each playing team can proof its knowledge on adequate measures that have to be taken in order to avoid or reduce losses related to natural disasters. Such measures relate to assessment and monitoring of risks, prevention and mitigation measures, preparedness and response as well as recovery and reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Vitamin D deficiency is considered to diminish bone regeneration. Yet, raising the serum levels takes months. A topic application of the active vitamin D metabolite, calcitriol, may be an effective approach. Thus, it becomes important to know the effect of vitamin D deficiency and local application on alveolar bone regeneration. MATERIAL AND METHODS Sixty rats were divided into three groups; two vitamin depletion groups and a control group. Identical single defects (2 mm diameter) were created in the maxilla and mandible treated with calcitriol soaked collagen in one deficiency group while in the other two groups not. Histomorphometric analysis and micro CTs were performed after 1 and 3 weeks. Serum levels of 25(OH)D3 and PTH were determined. RESULTS Bone formation rate significantly increased within the observation period in all groups. Bone regeneration was higher in the maxilla than in the mandible. However, bone regeneration was lower in the control group compared to vitamin depletion groups, with no significant effects by local administration of calcitriol (micro CT mandible p = 0.003, maxilla p < 0.001; histomorphometry maxilla p = 0.035, mandible p = 0.18). CONCLUSION Vitamin D deficiency not necessarily impairs bone regeneration in the rat jaw and a single local calcitriol application does not enhance healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a nontolerant plant to a large number of toxic compounds, Arabidopsis thaliana is a suitable model to study regulation of genes involved in response to heavy metals. Using a cDNA-microarray approach, we identified some ABC transporters that are differentially regulated after cadmium treatments, making them putative candidates for being involved in Cd sequestration and redistribution in plants. Regarding yeast and fission yeast, in which Cd is able to form complexes either with glutathione (GSH) or phytochelatins (PC) subsequently transported into vacuoles via ABC transporters, it is also very likely that some plant ABC transporters are able to transport GS2–Cd or PC–Cd complexes into subcellular compartments or outside of the cell. The characterization of such transporters is of great interest for developing molecular biology approaches in phytoremediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HYPOTHESIS A multielectrode probe in combination with an optimized stimulation protocol could provide sufficient sensitivity and specificity to act as an effective safety mechanism for preservation of the facial nerve in case of an unsafe drill distance during image-guided cochlear implantation. BACKGROUND A minimally invasive cochlear implantation is enabled by image-guided and robotic-assisted drilling of an access tunnel to the middle ear cavity. The approach requires the drill to pass at distances below 1 mm from the facial nerve and thus safety mechanisms for protecting this critical structure are required. Neuromonitoring is currently used to determine facial nerve proximity in mastoidectomy but lacks sensitivity and specificity necessaries to effectively distinguish the close distance ranges experienced in the minimally invasive approach, possibly because of current shunting of uninsulated stimulating drilling tools in the drill tunnel and because of nonoptimized stimulation parameters. To this end, we propose an advanced neuromonitoring approach using varying levels of stimulation parameters together with an integrated bipolar and monopolar stimulating probe. MATERIALS AND METHODS An in vivo study (sheep model) was conducted in which measurements at specifically planned and navigated lateral distances from the facial nerve were performed to determine if specific sets of stimulation parameters in combination with the proposed neuromonitoring system could reliably detect an imminent collision with the facial nerve. For the accurate positioning of the neuromonitoring probe, a dedicated robotic system for image-guided cochlear implantation was used and drilling accuracy was corrected on postoperative microcomputed tomographic images. RESULTS From 29 trajectories analyzed in five different subjects, a correlation between stimulus threshold and drill-to-facial nerve distance was found in trajectories colliding with the facial nerve (distance <0.1 mm). The shortest pulse duration that provided the highest linear correlation between stimulation intensity and drill-to-facial nerve distance was 250 μs. Only at low stimulus intensity values (≤0.3 mA) and with the bipolar configurations of the probe did the neuromonitoring system enable sufficient lateral specificity (>95%) at distances to the facial nerve below 0.5 mm. However, reduction in stimulus threshold to 0.3 mA or lower resulted in a decrease of facial nerve distance detection range below 0.1 mm (>95% sensitivity). Subsequent histopathology follow-up of three representative cases where the neuromonitoring system could reliably detect a collision with the facial nerve (distance <0.1 mm) revealed either mild or inexistent damage to the nerve fascicles. CONCLUSION Our findings suggest that although no general correlation between facial nerve distance and stimulation threshold existed, possibly because of variances in patient-specific anatomy, correlations at very close distances to the facial nerve and high levels of specificity would enable a binary response warning system to be developed using the proposed probe at low stimulation currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mental speed approach explains individual differences in intelligence by faster information processing in individuals with higher compared to lower intelligence - especially in elementary cognitive tasks (ECTs). One of the most examined ECTs is the Hick paradigm. The present study aimed to contrast reaction time (RT) and P3 latency in a Hick task as predictors of intelligence. Although both, RT and P3 latency, are commonly used as indicators of mental speed, it is also known that they measure different aspects of information processing. Participants were 113 female students. RT and P3 latency were measured while participants completed the Hick task with four levels of complexity. Intelligence was assessed with Cattell's Culture Fair Test. A RT factor and a P3 factor were extracted by employing a PCA across complexity levels. There was no significant correlation between the factors. Commonality analysis was used to determine the proportions of unique and shared variance in intelligence explained by the RT and P3 latency factors. RT and P3 latency explained 5.5% and 5% of unique variance in intelligence. However, the two speed factors did not explain a significant portion of shared variance. This result suggests that RT and P3 latency in the Hick paradigm are measuring different aspects of information processing that explain different parts of variance in intelligence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analogue model experiments using both brittle and viscous materials were performed to investigate the development and interaction of strike-slip faults in zones of distributed shear deformation. At low strain, bulk dextral shear deformation of an initial rectangular model is dominantly accommodated by left-stepping, en echelon strike-slip faults (Riedel shears, R) that form in response to the regional (bulk) stress field. Push-up zones form in the area of interaction between adjacent left-stepping Riedel shears. In cross sections, faults bounding push-up zones have an arcuate shape or merge at depth. Adjacent left-stepping R shears merge by sideways propagation or link by short synthetic shears that strike subparallel to the bulk shear direction. Coalescence of en echelon R shears results in major, through-going faults zones (master faults). Several parallel master faults develop due to the distributed nature of deformation. Spacing between master faults is related to the thickness of the brittle layers overlying the basal viscous layer. Master faults control to a large extent the subsequent fault pattern. With increasing strain, relatively short antithetic and synthetic faults develop mostly between old, but still active master faults. The orientation and evolution of the new faults indicate local modifications of the stress field. In experiments lacking lateral borders, closely spaced parallel antithetic faults (cross faults) define blocks that undergo clockwise rotation about a vertical axis with continuing deformation. Fault development and fault interaction at different stages of shear strain in our models show similarities with natural examples that have undergone distributed shear.