33 resultados para Reaction of the ground
Resumo:
During senescence, chlorophyll (chl) is metabolized to colorless nonfluorescent chl catabolites (NCCs). A central reaction of the breakdown pathway is the ring cleavage of pheophorbide (pheide) a to a primary fluorescent chl catabolite. Two enzymes catalyze this reaction, pheide a oxygenase (PAO) and red chl catabolite reductase. Five NCCs and three fluorescent chl catabolites (FCCs) accumulated during dark-induced chl breakdown in Arabidopsis (Arabidopsis thaliana). Three of these NCCs and one FCC (primary fluorescent chl catabolite-1) were identical to known catabolites from canola (Brassica napus). The presence in Arabidopsis of two modified FCCs supports the hypothesis that modifications, as present in NCCs, occur at the level of FCC. Chl degradation in Arabidopsis correlated with the accumulation of FCCs and NCCs, as well as with an increase in PAO activity. This increase was due to an up-regulation of Pao gene expression. In contrast, red chl catabolite reductase is not regulated during leaf development and senescence. A pao1 knockout mutant was identified and analyzed. The mutant showed an age- and light-dependent cell death phenotype on leaves and in flowers caused by the accumulation of photoreactive pheide a. In the dark, pao1 exhibited a stay-green phenotype. The key role of PAO in chl breakdown is discussed.
Resumo:
Senescent higher plants degrade their chlorophylls (Chls) to polar colorless tetrapyrrolic Chl catabolites, which accumulate in the vacuoles. In extracts from degreened leaves of the tree Cercidiphyllum japonicum an unpolar catabolite of this type was discovered. This tetrapyrrole was named Cj-NCC-2 and was found to be identical with the product of a stereoselective nonenzymatic isomerization of a “fluorescent” Chl catabolite. This (bio-mimetic) formation of the “nonfluorescent” catabolite Cj-NCC-2 took place readily at ambient temperature and at pH 4.9 in aqueous solution. The indicated nonenzymatic process is able to account for a crucial step during Chl breakdown in senescent higher plants. Once delivered to the acidic vacuoles, the fluorescent Chl catabolites are due to undergo a rapid, stereoselective isomerization to the ubiquitous nonfluorescent catabolites. The degradation of the Chl macrocycle is thus indicated to rely on just two known enzymes, one of which is senescence specific and cuts open the chlorin macroring. The two enzymes supply the fluorescent Chl catabolites, which are “programmed” to isomerize further rapidly in an acidic medium, as shown here. Indeed, only small amounts of the latter are temporarily observable during senescence in higher plants.