34 resultados para Radioactive pollution of water
Resumo:
The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.
Resumo:
The promoting effect of water on the electrochemical reduction of carbon dioxide (CO2) from non-aqueous solvents has been studied by means of cyclic voltammetry and in-situ surface-enhanced infrared absorption spectroscopy (SEIRAS). CO2 electroreduction on gold is known to be highly selective towards CO formation in aqueous and in non-aqueous media. The use of non-aqueous solvents is advantageous due to the significantly increased solubility of CO2 compared to aqueous systems. However, in the absence of any proton source, extremely high overpotentials are required for the CO2 electroreduction. In this work, we demonstrate for the first time a tremendous accelerating effect of water additives on the electroreduction of CO2 taking place at gold/acetonitrile interfaces. Already moderate amounts of water, in the concentration range of 0.5 to 0.7 M, are sufficient to decrease significantly the overpotential of CO2 reduction while keeping the CO2 concentration as high as in the pure acetonitrile. The effect of water additives on the mechanism of CO2 electroreduction on gold is discussed on the basis of electrochemical and IR spectroscopic data. The results obtained from gold are compared to analogue experiments carried out on platinum.
Resumo:
Permanently shadowed regions at the poles of the Moon and Mercury have been pointed out as candidates for hosting water ice at their surface. We have measured in the laboratory the visible and near infrared spectral range (VIS-NIR) bidirectional reflectance of intimate mixtures of water ice and the JSC-1AF lunar simulant for different ice concentrations, particle sizes, and measurement geometries. The nonlinearity between the measured reflectance and the amount of ice in the mixture can be reproduced to some extent by the mixing formulas of standard reflectance models, in particular, those of Hapke and Hiroi, which are tested here. Estimating ice concentrations from reflectance data without knowledge of the mixing coefficientsstrongly dependent on the size/shape of the grainscan result in large errors. According to our results, it is possible that considerable amounts of water ice might be intimately mixed in the regolith of the Moon and Mercury without producing noticeable photometric signatures.