55 resultados para Radar in navigation.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presenting visual feedback for image-guided surgery on a monitor requires the surgeon to perform time-consuming comparisons and diversion of sight and attention away from the patient. Deficiencies in previously developed augmented reality systems for image-guided surgery have, however, prevented the general acceptance of any one technique as a viable alternative to monitor displays. This work presents an evaluation of the feasibility and versatility of a novel augmented reality approach for the visualisation of surgical planning and navigation data. The approach, which utilises a portable image overlay device, was evaluated during integration into existing surgical navigation systems and during application within simulated navigated surgery scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pneumothoraces (PTXs) are a common entity in thoracic trauma. Micropower impulse radar (MIR) has been able to detect PTXs in surgical patients. However, this technology has not been tested previously on trauma patients. The purpose of this study was to determine the sensitivity and specificity of MIR to detect clinically significant PTXs. We hypothesized that MIR technology can effectively screen trauma patients for clinically significant PTXs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer navigation in total knee arthroplasty is somewhat controversial. We have previously shown that femoral component positioning is more accurate with computed navigation than with conventional implantation techniques, but the clinical impact of this is unknown. We now report the 5-year outcome of our previously reported 2-year outcome study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total knee arthroplasty performed with navigation results in more accurate component positioning with fewer outliers. It is not known whether image-based or image-free-systems are preferable and if navigation for only one component leads to equal accuracy in leg alignment than navigation of both components. We evaluated the results of total knee arthroplasties performed with femoral navigation. We studied 90 knees in 88 patients who had conventional total knee arthroplasties, image-based total knee arthroplasties, or total knee arthroplasties with image-free navigation. We compared patients' perioperative times, component alignment accuracy, and short-term outcomes. The total surgical time was longer in the image-based total knee arthroplasty group (109 +/- 7 minutes) compared with the image-free (101 +/- 17 minutes) and conventional total knee arthroplasty groups (87 +/- 20 minutes). The mechanical axis of the leg was within 3 degrees of neutral alignment, although the conventional total knee arthroplasty group showed more (10.6 degrees ) variance than the navigated groups (5.8 degrees and 6.4 degrees , respectively). We found a positive correlation between femoral component malalignment and the total mechanical axis in the conventional group. Our results suggest image-based navigation is not necessary, and image-free femoral navigation may be sufficient for accurate component alignment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Current concepts of catheter ablation for atrial fibrillation (AF) commonly use three-dimensional (3D) reconstructions of the left atrium (LA) for orientation, catheter navigation, and ablation line placement. OBJECTIVES: The purpose of this study was to compare the 3D electroanatomic reconstruction (Carto) of the LA, pulmonary veins (PVs), and esophagus with the true anatomy displayed on multislice computed tomography (CT). METHODS: In this prospective study, 100 patients undergoing AF catheter ablation underwent contrast-enhanced spiral CT scan with barium swallow and subsequent multiplanar and 3D reconstructions. Using Carto, circumferential plus linear LA lesions were placed. The esophagus was tagged and integrated into the Carto map. RESULTS: Compared with the true anatomy on CT, the electroanatomic reconstruction accurately displayed the true distance between the lower PVs; the distances between left upper PV, left lower PV, right lower PV, and center of the esophagus; the longitudinal diameter of the encircling line around the funnel of the left PVs; and the length of the mitral isthmus line. Only the distances between the upper PVs, the distance between the right upper PV and esophagus, and the diameter of the right encircling line were significantly shorter on the electroanatomic reconstructions. Furthermore, electroanatomic tagging of the esophagus reliably visualized the true anatomic relationship to the LA. On multiple tagging and repeated CT scans, the LA and esophagus showed a stable anatomic relationship, without relevant sideward shifting of the esophagus. CONCLUSION: Electroanatomic reconstruction can display with high accuracy the true 3D anatomy of the LA and PVs in most of the regions of interest for AF catheter ablation. In addition, Carto was able to visualize the true anatomic relationship between the esophagus and LA. Both structures showed a stable anatomic relationship on Carto and CT without relevant sideward shifting of the esophagus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new system for computer-aided corrective surgery of the jaws has been developed and introduced clinically. It combines three-dimensional (3-D) surgical planning with conventional dental occlusion planning. The developed software allows simulating the surgical correction on virtual 3-D models of the facial skeleton generated from computed tomography (CT) scans. Surgery planning and simulation include dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and segment repositioning. By coupling the software with a tracking system and with the help of a special registration procedure, we are able to acquire dental occlusion plans from plaster model mounts. Upon completion of the surgical plan, the setup is used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with the help of a display showing jaw positions and 3-D positioning guides updated in real time during the surgical procedure. The proposed approach offers the advantages of 3-D visualization and tracking technology without sacrificing long-proven cast-based techniques for dental occlusion evaluation. The system has been applied on one patient. Throughout this procedure, we have experienced improved assessment of pathology, increased precision, and augmented control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer assisted orthopaedic surgery (CAOS) technology has recently been introduced to overcome problems resulting from acetabular component malpositioning in total hip arthroplasty. Available navigation modules can conceptually be categorized as computer tomography (CT) based, fluoroscopy based, or image-free. The current study presents a comprehensive accuracy analysis on the computer assisted placement accuracy of acetabular cups. It combines analyses using mathematical approaches, in vitro testing environments, and an in vivo clinical trial. A hybrid navigation approach combining image-free with fluoroscopic technology was chosen as the best compromise to CT-based systems. It introduces pointer-based digitization for easily assessable points and bi-planar fluoroscopy for deep-seated landmarks. From the in vitro data maximum deviations were found to be 3.6 degrees for inclination and 3.8 degrees for anteversion relative to a pre-defined test position. The maximum difference between intraoperatively calculated cup inclination and anteversion with the postoperatively measured position was 4 degrees and 5 degrees, respectively. These data coincide with worst cases scenario predictions applying a statistical simulation model. The proper use of navigation technology can reduce variability of cup placement well within the surgical safe zone. Surgeons have to concentrate on a variety of error sources during the procedure, which may explain the reported strong learning curves for CAOS technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Component malpositioning and postoperative leg length discrepancy are the most common technical problems associated with total hip arthroplasty (THA). Surgical navigation offers the potential to reduce the incidence of these problems. We reviewed 317 patients (344 hips) that underwent THA using computed tomography-based surgical navigation, including 112 THAs using a simplified method of measuring leg length. Guided by the navigation system, cups were placed in 40.8 degrees +/- 2 degrees of operative abduction (range, 35 degrees -50 degrees) and 30.8 degrees +/- 3.2 degrees (range, 19 degrees -43 degrees) of operative anteversion. We subsequently measured radiographic abduction on plain anteroposterior pelvic radiographs and calculated abduction and anteversion. Radiographically, 97.1 % of the cups were in the safe zone for abduction and 92.4% for anteversion. The mean incision length was less than 8 cm for 327 of the 344 hips. Leg length change measured intraoperatively was 6.6 +/- 4.1 mm (range, -2-22), similar to measurements from the pre- and postoperative magnification-corrected radiographs. Computer assistance during THA increased the consistency of component positioning and allowed reliable measurement of leg length change during surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: The use of vascular plug devices for the occlusion of high-flow lesions is a relatively new and successful procedure in peripheral and cardiopulmonary interventions. We report on the use and efficiency of the Amplatzer vascular plug in a small clinical series and discuss its potential for occlusion of large vessels and high-flow lesions in neurointerventions. METHODS: Between 2005 and 2007 four patients (mean age 38.5 years, range 16-62 years) were treated with the device, in three patients to achieve parent artery occlusion of the internal carotid artery, in one patient to occlude a high-flow arteriovenous fistula of the neck. The application, time to occlusion, and angiographic and clinical results and the follow-up were evaluated. RESULTS: Navigation, positioning and detachment of the device were satisfactory in all cases. No flow-related migration of the plug was seen. The cessation of flow was delayed by a mean of 10.5 min after deployment of the first device. In the procedures involving vessel sacrifice, two devices had to be deployed to achieve total occlusion. No patient experienced new neurological deficits; the 3-month follow-up revealed stable results. CONCLUSION: The Amplatzer vascular plug can be adapted for the treatment of high-flow lesions and parent artery occlusions in the head and neck. In this small series the use of the devices was uncomplicated and safe. The rigid and large delivery device and the delayed cessation of flow currently limit the device's use in neurointerventions.