67 resultados para Radakovic, Nikola
Resumo:
BACKGROUND Deproteinized bovine bone mineral (DBBM) is one of the best-documented bone substitute materials for sinus floor elevation (SFE). PURPOSE DBBM is available in two particle sizes. Large particles are believed to facilitate improved neoangiogenesis compared with small ones. However, their impact on the rate of new bone formation, osteoconduction, and DBBM degradation has never been reported. In addition, the implant stability quotient (ISQ) has never been correlated to bone-to-implant contact (BIC) after SFE with simultaneous implant placement. MATERIALS AND METHODS Bilateral SFE with simultaneous implant placement was performed in 10 Göttingen minipigs. The two sides were randomized to receive large or small particle size DBBM. Two groups of 5 minipigs healed for 6 and 12 weeks, respectively. ISQ was recorded immediately after implant placement and at sacrifice. Qualitative histological differences were described and bone formation, DBBM degradation, BIC and bone-to-DBBM contact (osteoconduction) were quantified histomorphometrically. RESULTS DBBM particle size had no qualitative or quantitative impact on the amount of newly formed bone, DBBM degradation, or BIC for either of the healing periods (p > 0.05). Small-size DBBM showed higher osteoconduction after 6 weeks than large-size DBBM (p < 0.001). After 12 weeks this difference was compensated. There was no significant correlation between BIC and ISQ. CONCLUSION Small and large particle sizes were equally predictable when DBBM was used for SFE with simultaneous implant placement.
Resumo:
BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects in the mandibles of 12 minipigs. The animals were sacrificed after 1, 2, 4 and 8 weeks of healing. Histology and histomorphometrical analyses were performed to assess bone formation and graft resorption. An explorative statistical analysis was performed. RESULTS: The amount of new bone increased, while the amount of residual bone decreased over time with all harvesting techniques. At all given time points, no significant advantage of any harvesting technique on bone formation was observed. The harvesting technique, however, affected bone formation and the amount of residual graft within the overall healing period. Friedman test revealed an impact of the harvesting technique on residual bone graft after 2 and 4 weeks. At the later time point, post hoc testing showed more newly formed bone in association with bone graft processed by bone mill than harvested by bone scraper and piezosurgery. CONCLUSIONS: Transplantation of autogenous bone particles harvested with four techniques in the present model resulted in moderate differences in terms of bone formation and graft resorption.
Resumo:
BACKGROUND Cats are definitive hosts of Toxoplasma gondii and play an essential role in the epidemiology of this parasite. The study aims at clarifying whether cats are able to develop specific antibodies against different clonal types of T. gondii and to determine by serotyping the T. gondii clonal types prevailing in cats as intermediate hosts in Germany. METHODOLOGY To establish a peptide-microarray serotyping test, we identified 24 suitable peptides using serological T. gondii positive (n=21) and negative cat sera (n=52). To determine the clonal type-specific antibody response of cats in Germany, 86 field sera from T. gondii seropositive naturally infected cats were tested. In addition, we analyzed the antibody response in cats experimentally infected with non-canonical T. gondii types (n=7). FINDINGS Positive cat reference sera reacted predominantly with peptides harbouring amino acid sequences specific for the clonal T. gondii type the cats were infected with. When the array was applied to field sera from Germany, 98.8% (85/86) of naturally-infected cats recognized similar peptide patterns as T. gondii type II reference sera and showed the strongest reaction intensities with clonal type II-specific peptides. In addition, naturally infected cats recognized type II-specific peptides significantly more frequently than peptides of other type-specificities. Cats infected with non-canonical types showed the strongest reactivity with peptides presenting amino-acid sequences specific for both, type I and type III. CONCLUSIONS Cats are able to mount a clonal type-specific antibody response against T. gondii. Serotyping revealed for most seropositive field sera patterns resembling those observed after clonal type II-T. gondii infection. This finding is in accord with our previous results on the occurrence of T. gondii clonal types in oocysts shed by cats in Germany.
Resumo:
BACKGROUND: Zirconia (ZrO2 ) has received interest as a dental material; however, little information is available on the impact of surface modifications on the osseointegration of zirconia implants. PURPOSE: The aim of the present study was to determine the effect of acid or alkaline etching of sandblasted ZrO2 implants on bone apposition in vivo. METHODS: Cylindrical ZrO2 implants with two circumferential grooves were placed in the maxilla of 12 miniature pigs. Biopsies were harvested after 1, 2, 4, and 8 weeks of healing. Undecalcified toluidine blue-stained ground sections were produced. The bone-to-implant contact, the bone area, and the presence of multinucleated giant cells were determined by histomorphometry. An uncorrected explorative statistical analysis was performed. RESULTS: Acid etching but not alkaline etching of sandblasted ZrO2 implants caused more bone-to-implant contact than sandblasted ZrO2 implants. The bone area was unaffected by the surface modifications. Acid and alkaline etching both increased the formation of multinucleated giant cells at the implant surface. CONCLUSIONS: This study provides a scientific basis to further investigate the impact of acid etching of sandblasted ZrO2 implants on osseointegration and the role of multinucleated giant cells in this process.