53 resultados para RETROTRAPEZOID NUCLEUS
Resumo:
Objective: Identification of the ventrointermediate thalamic nucleus (Vim) in modern 3T high-field MRI for image-based targeting in deep brain stimulation (DBS) is still challenging. To evaluate the usefulness and reliability of analyzing the connectivity with the cerebellum using Q-ball-calculation we performed a retrospective analysis. Method: 5 patients who underwent bilateral implantation of electrodes in the Vim for treatment of Essential Tremor between 2011 and 2012 received additional preoperative Q-ball imaging. Targeting was performed according to atlas coordinates and standard MRI. Additionally we performed a retrospective identification of the Vim by analyzing the connectivity of the thalamus with the dentate nucleus. The exact position of the active stimulation contact in the postoperative CT was correlated with the Vim as it was identified by Q-ball calculation. Results: Localization of the Vim by analysis of the connectivity between thalamus and cerebellum was successful in all 5 patients on both sides. The average position of the active contacts was 14.6 mm (SD 1.24) lateral, 5.37 mm (SD 0.094 posterior and 2.21 mm (SD 0.69) cranial of MC. The cranial portion of the dentato-rubro-thalamic tract was localized an average of 3.38 mm (SD 1.57) lateral and 1.5 mm (SD 1.22) posterior of the active contact. Conclusions: Connectivity analysis by Q-ball calculation provided direct visualization of the Vim in all cases. Our preliminary results suggest, that the target determined by connectivity analysis is valid and could possibly be used in addition to or even instead of atlas based targeting. Larger prospective calculations are needed to determine the robustness of this method in providing refined information useful for neurosurgical treatment of tremor.
Resumo:
The spectrum of electrons from muons decaying in an atomic bound state is significantly modified by their interaction with the nucleus. Somewhat unexpectedly, its first measurement, at the Canadian laboratory TRIUMF, differed from basic theory. We show, using a combination of techniques developed in atomic, nuclear, and high-energy physics, that radiative corrections eliminate the discrepancy. In addition to solving that outstanding problem, our more precise predictions are potentially useful for interpreting future high-statistics muon experiments that aim to search for exotic interactions at 10−16 sensitivity.
Resumo:
Introduction Notochordal cells (NC) are shifted back into focus due to their apparent action of activating other disc cells via indirect release of yet unknown factors into the medium (conditioned medium = CM).1,2 Recent evidence confirms the results from the late 1990s.3,4 Here, we test porcine (p) NC cultured in 3D and the influence of adding serum or using serum-free medium onto the culture on NC cells and its stimulating effects for subsequent coculture with primary bovine (b) nucleus pulposus (bNPC) and annulus fibrous cells (bAFC). Materials and Methods Primary pNC, bNPC, and bAFC were isolated from porcine tails (< 6-12 months age) or bovine tails (∼1 year age), which were obtained from the food chain (N = 4 repeats) within 4 hours postmortem. All cells were seeded into 1.2% alginate, each with a density of 4 × 106/mL. NC were then either cultured for 7 days in serum free medium (SFM = Dulbecco modified eagle medium [DMEM] supplied with ITS+, 50 µg/mL vitamin C and nonessential amino acids) or DMEM + 10% fetal calf serum (FCS). CM was produced from NC collecting 4 mL SFM and keeping approximately 30 beads for 7 days. Then, a coculture was set up in SFM for 14 days using indirect cell-cell contact (culture insert, high density pore, 0.4 µm) using a 50:50% ratio5 of pNC:bNP or bAF, or by addition of CM, respectively. The cell activity, glycosaminoglycan per DNA (GAG/DNA) ratio, and real-time RT-PCR of IVD relevant genes were monitored. Mass spectrometry was performed on the SFM and the cocultured medium as well as the CM of the pNC to identify possible key cytokines to the stimulatory effects. Results The results for cell activity confirmed that pNC are highly responsive on the nutritional condition in the culture (K-W test, p = 0.048) after 7 days of coculture. bNPC and bAFC did not respond significantly different to coculture or addition of CM with respect to cell activity. However, GAG/DNA ratio of pNC was significantly upregulated if they were initially pre-exposed to FCS and in coculture with bNPC after 14 days, for both normoxia and hypoxia (K-W, p = 0.03). The bNPC were stimulated by both, 1:1 coculture with pNC but also by addition of CM only, which resulted in approximately 200% increased GAG/DNA values relative to the day 0 state. However, this doubling of the GAG/DNA ratio was nonsignificant after 14 days. The aggrecan/collagen type 2 ratio as quantified from real-time RT-PCR pointed to a beneficial state of the bNPC if cultured either in indirect coculture with pNC or by the addition of CM (Fig. 1). The mass spectrometric analysis of the CM revealed that there was connecting tissue growth factor present (CTGF) among the cytokine CLC11, a cytokine that has been found to be expressed in skeletal tissues including bone marrow and chondrocytes among other factors that might have immunoregulatory and cell proliferative functions.
Resumo:
Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrosis. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osseo-induction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs. MSCs were kept in 1:control medium, 2:osteogenic medium±alginate beads, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, alkaline phosphatase assay and histological staining were performed. Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51Pto the co- cultures, however, induced mineralization of MSCs in presence of NPC. We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.
Resumo:
The histones which pack new DNA during the S phase of animal cells are made from mRNAs that are cleaved at their 3' end but not polyadenylated. Some of the factors used in this reaction are unique to it while others are shared with the polyadenylation process that generates all other mRNAs. Recent work has begun to shed light on how the cell manages the assignment of these common components to the two 3' processing systems, and how it achieves their cell cycle-regulation and recruitment to the histone pre-mRNA. Moreover, recent and older findings reveal multiple connections between the nuclear organization of histone genes, their transcription and 3' end processing as well as the control of cell proliferation.