117 resultados para REPERFUSION
Resumo:
Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.
Resumo:
AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.
Resumo:
AIMS To investigate a pressure-controlled intermittent coronary sinus occlusion (PICSO) system in an ischaemia/reperfusion model. METHODS AND RESULTS We randomly assigned 18 pigs subjected to 60 minutes ischaemia by left anterior descending (LAD) coronary artery balloon occlusion to PICSO (n=12, groups A and B) or to controls (n=6, group C). PICSO started 10 minutes before (group A), or 10 minutes after (group B) reperfusion and was maintained for 180 minutes. A continuous drop of distal LAD pressure was observed in group C. At 180 minutes of reperfusion, LAD diastolic pressure was significantly lower in group C compared to groups A and B (p=0.02). LAD mean pressure was significantly less than the systemic arterial mean pressure in group C (p=0.02), and the diastolic flow slope was flat, compared to groups A and B (p=0.03). IgG and IgM antibody deposition was significantly higher in ischaemic compared to non-ischaemic tissue in group C (p<0.05). Significantly more haemorrhagic lesions were seen in the ischaemic myocardium of group C, compared to groups A and B (p=0.002). The necrotic area differed non-significantly among groups. CONCLUSIONS PICSO was safe and effective in improving coronary perfusion pressure and reducing antibody deposition consistent with reduced microvascular obstruction and ischaemia/reperfusion injury.
Resumo:
Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.
C1 esterase inhibitor reduces lower extremity ischemia/reperfusion injury and associated lung damage
Resumo:
BACKGROUND Ischemia/reperfusion injury of lower extremities and associated lung damage may result from thrombotic occlusion, embolism, trauma, or surgical intervention with prolonged ischemia and subsequent restoration of blood flow. This clinical entity is characterized by high morbidity and mortality. Deprivation of blood supply leads to molecular and structural changes in the affected tissue. Upon reperfusion inflammatory cascades are activated causing tissue injury. We therefore tested preoperative treatment for prevention of reperfusion injury by using C1 esterase inhibitor (C1 INH). METHODS AND FINDINGS Wistar rats systemically pretreated with C1 INH (n = 6), APT070 (a membrane-targeted myristoylated peptidyl construct derived from human complement receptor 1, n = 4), vehicle (n = 7), or NaCl (n = 8) were subjected to 3h hind limb ischemia and 24h reperfusion. The femoral artery was clamped and a tourniquet placed under maintenance of a venous return. C1 INH treated rats showed significantly less edema in muscle (P<0.001) and lung and improved muscle viability (P<0.001) compared to controls and APT070. C1 INH prevented up-regulation of bradykinin receptor b1 (P<0.05) and VE-cadherin (P<0.01), reduced apoptosis (P<0.001) and fibrin deposition (P<0.01) and decreased plasma levels of pro-inflammatory cytokines, whereas deposition of complement components was not significantly reduced in the reperfused muscle. CONCLUSIONS C1 INH reduced edema formation locally in reperfused muscle as well as in lung, and improved muscle viability. C1 INH did not primarily act via inhibition of the complement system, but via the kinin and coagulation cascade. APT070 did not show beneficial effects in this model, despite potent inhibition of complement activation. Taken together, C1 INH might be a promising therapy to reduce peripheral ischemia/reperfusion injury and distant lung damage in complex and prolonged surgical interventions requiring tourniquet application.
Resumo:
OBJECTIVES Susceptibility-weighted imaging (SWI) enables visualization of thrombotic material in acute ischemic stroke. We aimed to validate the accuracy of thrombus depiction on SWI compared to time-of-flight MRA (TOF-MRA), first-pass gadolinium-enhanced MRA (GE-MRA) and digital subtraction angiography (DSA). Furthermore, we analysed the impact of thrombus length on reperfusion success with endovascular therapy. METHODS Consecutive patients with acute ischemic stroke due to middle cerebral artery (MCA) occlusions undergoing endovascular recanalization were screened. Only patients with a pretreatment SWI were included. Thrombus visibility and location on SWI were compared to those on TOF-MRA, GE-MRA and DSA. The association between thrombus length on SWI and reperfusion success was studied. RESULTS Eighty-four of the 88 patients included (95.5 %) showed an MCA thrombus on SWI. Strong correlations between thrombus location on SWI and that on TOF-MRA (Pearson's correlation coefficient 0.918, P < 0.001), GE-MRA (0.887, P < 0.001) and DSA (0.841, P < 0.001) were observed. Successful reperfusion was not significantly related to thrombus length on SWI (P = 0.153; binary logistic regression). CONCLUSIONS In MCA occlusion thrombus location as seen on SWI correlates well with angiographic findings. In contrast to intravenous thrombolysis, thrombus length appears to have no impact on reperfusion success of endovascular therapy. KEY POINTS • SWI helps in assessing location and length of thrombi in the MCA • SWI, MRA and DSA are equivalent in detecting the MCA occlusion site • SWI is superior in identifying the distal end of the thrombus • Stent retrievers should be deployed over the distal thrombus end • Thrombus length did not affect success of endovascular reperfusion guided by SWI.
Resumo:
AIMS Primary percutaneous coronary intervention (PPCI) is the preferred reperfusion therapy in ST-elevation myocardial infarction (STEMI). We conducted this study to evaluate the contemporary status on the use and type of reperfusion therapy in patients admitted with STEMI in the European Society of Cardiology (ESC) member countries. METHODS AND RESULTS A cross-sectional descriptive study based on aggregated country-level data on the use of reperfusion therapy in patients admitted with STEMI during 2010 or 2011. Thirty-seven ESC countries were able to provide data from existing national or regional registries. In countries where no such registries exist, data were based on best expert estimates. Data were collected on the use of STEMI reperfusion treatment and mortality, the numbers of cardiologists, and the availability of PPCI facilities in each country. Our survey provides a brief data summary of the degree of variation in reperfusion therapy across Europe. The number of PPCI procedures varied between countries, ranging from 23 to 884 per million inhabitants. Primary percutaneous coronary intervention and thrombolysis were the dominant reperfusion strategy in 33 and 4 countries, respectively. The mean population served by a single PPCI centre with a 24-h service 7 days a week ranged from 31 300 inhabitants per centre to 6 533 000 inhabitants per centre. Twenty-seven of the total 37 countries participated in a former survey from 2007, and major increases in PPCI utilization were observed in 13 of these countries. CONCLUSION Large variations in reperfusion treatment are still present across Europe. Countries in Eastern and Southern Europe reported that a substantial number of STEMI patients are not receiving any reperfusion therapy. Implementation of the best reperfusion therapy as recommended in the guidelines should be encouraged.
Resumo:
OBJECTIVES In cardiac muscle, ischemia reperfusion (IR) injury is attenuated by mitochondrial function, which may be upregulated by focal adhesion kinase (FAK). The aim of this study was to determine whether increased FAK levels reduced rhabdomyolysis in skeletal muscle too. MATERIAL AND METHODS In a translational in vivo experiment, rat lower limbs were subjected to 4 hours of ischemia followed by 24 or 72 hours of reperfusion. FAK expression was stimulated 7 days before (via somatic transfection with pCMV-driven FAK expression plasmid) and outcomes were measured against non-transfected and empty transfected controls. Slow oxidative (i.e., mitochondria-rich) and fast glycolytic (i.e., mitochondria-poor) type muscles were analyzed separately regarding rhabdomyolysis, apoptosis, and inflammation. Severity of IR injury was assessed using paired non-ischemic controls. RESULTS After 24 hours of reperfusion, marked rhabdomyolysis was found in non-transfected and empty plasmid-transfected fast-type glycolytic muscle, tibialis anterior. Prior transfection enhanced FAK concentration significantly (p = 0.01). Concomitantly, levels of BAX, promoting mitochondrial transition pores, were reduced sixfold (p = 0.02) together with a blunted inflammation (p = 0.01) and reduced rhabdomyolysis (p = 0.003). Slow oxidative muscle, m. soleus, reacted differently: although apoptosis was detectable after IR, rhabdomyolysis did not appear before 72 hours of reperfusion; and FAK levels were not enhanced in ischemic muscle despite transfection (p = 0.66). CONCLUSIONS IR-induced skeletal muscle rhabdomyolysis is a fiber type-specific phenomenon that appears to be modulated by mitochondria reserves. Stimulation of FAK may exploit these reserves constituting a potential therapeutic approach to reduce tissue loss following acute limb IR in fast-type muscle.
Resumo:
BACKGROUND Lower extremity ischemia-reperfusion injury (IRI)-prolonged ischemia and the subsequent restoration of circulation-may result from thrombotic occlusion, embolism, trauma, or tourniquet application in surgery. The aim of this study was to assess the effect of low-molecular-weight dextran sulfate (DXS) on skeletal muscle IRI. METHODS Rats were subjected to 3 h of ischemia and 2 or 24 h of reperfusion. To induce ischemia the femoral artery was clamped and a tourniquet placed under the maintenance of the venous return. DXS was injected systemically 10 min before reperfusion. Muscle and lung tissue samples were analyzed for deposition of immunoglobulin M (IgM), IgG, C1q, C3b/c, fibrin, and expression of vascular endothelial-cadherin and bradykinin receptors b1 and b2. RESULTS Antibody deposition in reperfused legs was reduced by DXS after 2 h (P < 0.001, IgM and IgG) and 24 h (P < 0.001, IgM), C3b/c deposition was reduced in muscle and lung tissue (P < 0.001), whereas C1q deposition was reduced only in muscle (P < 0.05). DXS reduced fibrin deposits in contralateral legs after 24 h of reperfusion but did not reduce edema in muscle and lung tissue or improve muscle viability. Bradykinin receptor b1 and vascular endothelial-cadherin expression were increased in lung tissue after 24 h of reperfusion in DXS-treated and non-treated rats but bradykinin receptor b2 was not affected by IRI. CONCLUSIONS In contrast to studies in myocardial infarction, DXS did not reduce IRI in this model. Neither edema formation nor viability was improved, whereas deposition of complement and coagulation components was significantly reduced. Our data suggest that skeletal muscle IRI may not be caused by the complement or coagulation alone, but the kinin system may play an important role.
Resumo:
Prolonged ischemia of skeletal muscle tissue, followed by reperfusion, leads to ischemia/reperfusion injury (IRI), which is a feared local and systemic inflammatory reaction. With respect to the 3Rs, we wanted to determine which parameters for assessment of IRI require a reperfusion time of 24 h and for which 2 h of reperfusion are sufficient. Rats were subjected to 3 h of hind limb ischemia and 2 h or 24 h of reperfusion. Human plasma derived C1 inhibitor was used as a drug to prevent reperfusion injury. For 2 h of reperfusion the rats stayed under anesthesia throughout (severity grade 1), whereas for 24 h they were awake under analgesia during reperfusion (grade 2). The femoral artery was clamped and a tourniquet was placed, under maintenance of venous return. C1 esterase inhibitor was systemically administered 5 min before the induction of ischemia. No differences in local muscle edema formation and depositions of immunoglobulin G and immunoglobulin M were observed between 2 h and 24 h (P > 0.05), whereas lung edema was only observed after 24 h. Muscle viability was significantly lower after 24 h vs 2 h reperfusion (P < 0.05). Increased plasma creatine kinase (CK)-MM and platelet-derived growth factor (PDGF)-bb could be detected after 2 h, but not after 24 h of reperfusion. By contrast, depositions of C3b/c and fibrin in muscle were only detected after 24 h (P < 0.001). In conclusion, for a first screening of drug candidates to reduce IRI, 2 h reperfusions are sufficient, and these reduce the severity of the animal experiment. Twenty-four-hour reperfusions are only needed for in-depth analysis of the mechanisms of IRI, including lung damage.
Resumo:
BACKGROUND: Ischemia-reperfusion injury (IRI) significantly contributes to graft dysfunction after liver transplantation. Natural killer (NK) cells are crucial innate effector cells in the liver and express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent inducer of hepatocyte cell death. Here, we investigated if TRAIL expression on NK cells contributes to hepatic IRI. METHODS: The outcome after partial hepatic IRI was assessed in TRAIL-null mice and contrasted to C57BL/6J wild-type mice and after NK cell adoptive transfer in RAG2/common gamma-null mice that lack T, B, and NK cells. Liver IRI was assessed by histological analysis, alanine aminotransferase, hepatic neutrophil activation by myeloperoxidase activity, and cytokine secretion at specific time points. NK cell cytotoxicity and differentiation were assessed in vivo and in vitro. RESULTS: Twenty-four hours after reperfusion, TRAIL-null mice exhibited significantly higher serum transaminases, histological signs of necrosis, neutrophil infiltration, and serum levels of interleukin-6 compared to wild-type animals. Adoptive transfer of TRAIL-null NK cells into immunodeficient RAG2/common gamma-null mice was associated with significantly elevated liver damage compared to transfer of wild-type NK cells. In TRAIL-null mice, NK cells exhibit higher cytotoxicity and decreased differentiation compared to wild-type mice. In vitro, cytotoxicity against YAC-1 and secretion of interferon gamma by TRAIL-null NK cells were significantly increased compared to wild-type controls. CONCLUSIONS: These experiments reveal that expression of TRAIL on NK cells is protective in a murine model of hepatic IRI through modulation of NK cell cytotoxicity and NK cell differentiation.
Resumo:
Ischemia/reperfusion injury (IRI) may occur from ischemia due to thrombotic occlusion, trauma or surgical interventions, including transplantation, with subsequent reestablishment of circulation. Time-dependent molecular and structural changes result from the deprivation of blood and oxygen in the affected tissue during ischemia. Upon restoration of blood flow a multifaceted network of plasma cascades is activated, including the complement-, coagulation-, kinin-, and fibrinolytic system, which plays a major role in the reperfusion-triggered inflammatory process. The plasma cascade systems are therefore promising therapeutic targets for attenuation of IRI. Earlier studies showed beneficial effects through inhibition of the complement system using specific complement inhibitors. However, pivotal roles in IRI are also attributed to other cascades. This raises the question, whether drugs, such as C1 esterase inhibitor, which regulate more than one cascade at a time, have a higher therapeutic potential. The present review discusses different therapeutic approaches ranging from specific complement inhibition to simultaneous inhibition of plasma cascade systems for reduction of IRI, gives an overview of the plasma cascade systems in IRI as well as highlights recent findings in this field.
Resumo:
OBJECTIVE Faster time from onset to recanalization (OTR) in acute ischemic stroke using endovascular therapy (ET) has been associated with better outcome. However, previous studies were based on less-effective first-generation devices, and analyzed only dichotomized disability outcomes, which may underestimate the full effect of treatment. METHODS In the combined databases of the SWIFT and STAR trials, we identified patients treated with the Solitaire stent retriever with achievement of substantial reperfusion (Thrombolysis in Cerebral Infarction [TICI] 2b-3). Ordinal numbers needed to treat values were derived by populating joint outcome tables. RESULTS Among 202 patients treated with ET with TICI 2b to 3 reperfusion, mean age was 68 (±13), 62% were female, and median National Institutes of Health Stroke Scale (NIHSS) score was 17 (interquartile range [IQR]: 14-20). Day 90 modified Rankin Scale (mRS) outcomes for OTR time intervals ranging from 180 to 480 minutes showed substantial time-related reductions in disability across the entire outcome range. Shorter OTR was associated with improved mean 90-day mRS (1.4 vs. 2.4 vs. 3.3, for OTR groups of 124-240 vs. 241-360 vs. 361-660 minutes; p < 0.001). The number of patients identified as benefitting from therapy with shorter OTR were 3-fold (range, 1.5-4.7) higher on ordinal, compared with dichotomized analysis. For every 15-minute acceleration of OTR, 34 per 1,000 treated patients had improved disability outcome. INTERPRETATION Analysis of disability over the entire outcome range demonstrates a marked effect of shorter time to reperfusion upon improved clinical outcome, substantially higher than binary metrics. For every 5-minute delay in endovascular reperfusion, 1 of 100 patients has a worse disability outcome. Ann Neurol 2015;78:584-593.
Resumo:
OBJECTIVE To assess whether the association between reperfusion and improved clinical outcomes after stroke differs depending on the site of the arterial occlusive lesion (AOL). METHODS We pooled data from Solitaire With the Intention for Thrombectomy (SWIFT), Solitaire FR Thrombectomy for Acute Revascularisation (STAR), Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution Study 2 (DEFUSE 2), and Interventional Management of Stroke Trial (IMS III) to compare the strength of the associations between reperfusion and clinical outcomes in patients with internal carotid artery (ICA), proximal middle cerebral artery (MCA) (M1), and distal MCA (M2/3/4) occlusions. RESULTS Among 710 included patients, the site of the AOL was the ICA in 161, the proximal MCA in 389, and the distal MCA in 160 patients (M2 = 131, M3 = 23, and M4 = 6). Reperfusion was associated with an increase in the rate of good functional outcome (modified Rankin Scale [mRS] score 0-2) in patients with ICA (odds ratio [OR] 3.5, 95% confidence interval [CI] 1.7-7.2) and proximal MCA occlusions (OR 6.2, 95% CI 3.8-10.2), but not in patients with distal MCA occlusions (OR 1.4, 95% CI 0.8-2.6). Among patients with M2 occlusions, a subset of the distal MCA cohort, reperfusion was associated with excellent functional outcome (mRS 0-1; OR 2.2, 95% CI 1.0-4.7). CONCLUSIONS The association between endovascular reperfusion and better clinical outcomes is more profound in patients with ICA and proximal MCA occlusions compared to patients with distal MCA occlusions. Because there are limited data from randomized controlled trials on the effect of endovascular therapy in patients with distal MCA occlusions, these results underscore the need for inclusion of this subgroup in future endovascular therapy trials.