56 resultados para Quaternary
Resumo:
Fluvial cut-and-fill sequences have frequently been reported from various sites on Earth. Nevertheless, the information about the past erosional regime and hydrological conditions have not yet been adequately deciphered from these archives. The Quaternary terrace sequences in the Pisco valley, located at ca. 13°S, offer a manifestation of an orbitally-driven cyclicity in terrace construction where phases of sediment accumulation have been related to the Minchin (48–36 ka) and Tauca (26–15 ka) lake level highstands on the Altiplano. Here, we present a 10Be-based sediment budget for the cut-and-fill terrace sequences in this valley to quantify the orbitally forced changes in precipitation and erosion. We find that the Minchin period was characterized by an erosional pulse along the Pacific coast where denudation rates reached values as high as 600±80 mm/ka600±80 mm/ka for a relatively short time span lasting a few thousands of years. This contrasts to the younger pluvial periods and the modern situation when 10Be-based sediment budgets register nearly zero erosion at the Pacific coast. We relate these contrasts to different erosional conditions between the modern and the Minchin time. First, the sediment budget infers a precipitation pattern that matches with the modern climate ca. 1000 km farther north, where highly erratic and extreme El Niño-related precipitation results in fast erosion and flooding along the coast. Second, the formation of a thick terrace sequence requires sufficient material on catchment hillslopes to be stripped off by erosion. This was most likely the case immediately before the start of the Minchin period, because this erosional epoch was preceded by a >50 ka-long time span with poorly erosive climate conditions, allowing for sufficient regolith to build up on the hillslopes. Finally, this study suggests a strong control of orbitally and ice sheet forced latitudinal shifts of the ITCZ on the erosional gradients and sediment production on the western escarpment of the Peruvian Andes at 13° during the Minchin period.
Resumo:
Abstract. Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian- Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid’s water level was low (high �18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high �13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower �18Ocalcite suggest increase in humidity and lake levels until around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid, �13Corg are complacent; in contrast, Lake Prespa shows consistently higher �13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high �18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low �18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest �18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka, �18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low �18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean.
Resumo:
Central Switzerland lies tectonically in an intraplate area and recurrence rates of strong earthquakes exceed the time span covered by historic chronicles. However, many lakes are present in the area that act as natural seismographs: their continuous, datable and high-resolution sediment succession allows extension of the earthquake catalogue to pre-historic times. This study reviews and compiles available data sets and results from more than 10 years of lacustrine palaeoseismological research in lakes of northern and Central Switzerland. The concept of using lacustrine mass-movement event stratigraphy to identify palaeo-earthquakes is showcased by presenting new data and results from Lake Zurich. The Late Glacial to Holocene mass-movement units in this lake document a complex history of varying tectonic and environmental impacts. Results include sedimentary evidence of three major and three minor, simultaneously triggered basin-wide lateral slope failure events interpreted as the fingerprints of palaeoseismic activity. A refined earthquake catalogue, which includes results from previous lake studies, reveals a non-uniform temporal distribution of earthquakes in northern and Central Switzerland. A higher frequency of earthquakes in the Late Glacial and Late Holocene period documents two different phases of neotectonic activity; they are interpreted to be related to isostatic post-glacial rebound and relatively recent (re-)activation of seismogenic zones, respectively. Magnitudes and epicentre reconstructions for the largest identified earthquakes provide evidence for two possible earthquake sources: (i) a source area in the region of the Alpine or Sub-Alpine Front due to release of accumulated north-west/south-east compressional stress related to an active basal thrust beneath the Aar massif; and (ii) a source area beneath the Alpine foreland due to reactivation of deep-seated strike-slip faults. Such activity has been repeatedly observed instrumentally, for example, during the most recent magnitude 4.2 and 3.5 earthquakes of February 2012, near Zug. The combined lacustrine record from northern and Central Switzerland indicates that at least one of these potential sources has been capable of producing magnitude 6.2 to 6.7 events in the past.
Resumo:
Plectin, a cytolinker of the plakin family, anchors the intermediate filament (IF) network formed by keratins 5 and 14 (K5/K14) to hemidesmosomes, junctional adhesion complexes in basal keratinocytes. Genetic alterations of these proteins cause epidermolysis bullosa simplex (EBS) characterized by disturbed cytoarchitecture and cell fragility. The mechanisms through which mutations located after the documented plectin IF-binding site, composed of the plakin-repeat domain (PRD) B5 and the linker, as well as mutations in K5 or K14, lead to EBS remain unclear. We investigated the interaction of plectin C terminus, encompassing four domains, the PRD B5, the linker, the PRD C, and the C extremity, with K5/K14 using different approaches, including a rapid and sensitive fluorescent protein-binding assay, based on enhanced green fluorescent protein-tagged proteins (FluoBACE). Our results demonstrate that all four plectin C-terminal domains contribute to its association with K5/K14 and act synergistically to ensure efficient IF binding. The plectin C terminus predominantly interacted with the K5/K14 coil 1 domain and bound more extensively to K5/K14 filaments compared with monomeric keratins or IF assembly intermediates. These findings indicate a multimodular association of plectin with K5/K14 filaments and give insights into the molecular basis of EBS associated with pathogenic mutations in plectin, K5, or K14 genes.Journal of Investigative Dermatology advance online publication, 10 July 2014; doi:10.1038/jid.2014.255.
Resumo:
The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe–Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.
Resumo:
The Central Anatolian Plateau (CAP) in Turkey is a relatively small plateau (300 × 400 km) with moderate average elevations of ∼1 km situated between the Pontide and Tauride orogenic mountain belts. Kızılırmak, which is the longest river (1355 km) within the borders of Turkey, flows within the CAP and slowly incises into lacustrine and volcaniclastic units before finally reaching the Black Sea. We dated the Cappadocia section of the Kızılırmak terraces in the CAP by using cosmogenic burial and isochron-burial dating methods with 10Be and 26Al as their absolute dating can provide insight into long-term incision rates, uplift and climatic changes. Terraces at 13, 20, 75 and 100 m above the current river indicate an average incision rate of 0.051 ± 0.01 mm/yr (51 ± 1 m/Ma) since ∼1.9 Ma. Using the base of a basalt fill above the modern course of the Kızılırmak, we also calculated 0.05–0.06 mm/yr mean incision and hence rock uplift rate for the last 2 Ma. Although this rate might be underestimated due to normal faulting along the valley sides, it perfectly matches our results obtained from the Kızılırmak terraces. Although up to 5–10 times slower, the Quaternary uplift of the CAP is closely related to the uplift of the northern and southern plateau margins respectively.
Resumo:
Aim We used combined palaeobotanical and genetic data to assess whether Norway spruce (Picea abies) and Siberian spruce (Picea obovata), two major components of the Eurasian boreal forests, occupied separate glacial refugia, and to test previous hypotheses on their distinction, geographical delimitation and introgression. Location The range of Norway spruce in northern Europe and Siberian spruce in northern Asia. Methods Pollen data and recently compiled macrofossil records were summarized for the Last Glacial Maximum (LGM), late glacial and Holocene. Genetic variation was assessed in 50 populations using one maternally (mitochondrial nad1) and one paternally (chloroplast trnT–trnL) inherited marker and analysed using spatial analyses of molecular variance (SAMOVA). Results Macrofossils showed that spruce was present in both northern Europe and Siberia at the LGM. Congruent macrofossil and pollen data from the late glacial suggested widespread expansions of spruce in the East European Plain, West Siberian Plain, southern Siberian mountains and the Baikal region. Colonization was largely completed during the early Holocene, except in the formerly glaciated area of northern Europe. Both DNA markers distinguished two highly differentiated groups that correspond to Norway spruce and Siberian spruce and coincide spatially with separate LGM spruce occurrences. The division of the mtDNA variation was geographically well defined and occurred to the east of the Ural Mountains along the Ob River, whereas the cpDNA variation showed widespread admixture. Genetic diversity of both DNA markers was higher in western than in eastern populations. Main conclusions North Eurasian Norway spruce and Siberian spruce are genetically distinct and occupied separate LGM refugia, Norway spruce on the East European Plain and Siberian spruce in southern Siberia, where they were already widespread during the late glacial. They came into contact in the basin of the Ob River and probably hybridized. The lower genetic diversity in the eastern populations may indicate that Siberian spruce suffered more from past climatic fluctuations than Norway spruce.