60 resultados para Quantum Simulation, Quantum Simulators, QED, Lattice Gauge Theory
Resumo:
We calculate the momentum diffusion coefficient for heavy quarks in SU(3) gluon plasma at temperatures 1-2 times the deconfinement temperature. The momentum diffusion coefficient is extracted from a Monte Carlo calculation of the correlation function of color electric fields, in the leading order of expansion in heavy quark mass. Systematics of the calculation are examined, and compared with perturbtion theory and other estimates.
Resumo:
We consider black probes of Anti-de Sitter and Schrödinger spacetimes embedded in string theory and M-theory and construct perturbatively new black hole geometries. We begin by reviewing black string configurations in Anti-de Sitter dual to finite temperature Wilson loops in the deconfined phase of the gauge theory and generalise the construction to the confined phase. We then consider black strings in thermal Schrödinger, obtained via a null Melvin twist of the extremal D3-brane, and construct three distinct types of black string configurations with spacelike as well as lightlike separated boundary endpoints. One of these configurations interpolates between the Wilson loop operators, with bulk duals defined in Anti-de Sitter and another class of Wilson loop operators, with bulk duals defined in Schrödinger. The case of black membranes with boundary endpoints on the M5-brane dual to Wilson surfaces in the gauge theory is analysed in detail. Four types of black membranes, ending on the null Melvin twist of the extremal M5-brane exhibiting the Schrödinger symmetry group, are then constructed. We highlight the differences between Anti-de Sitter and Schrödinger backgrounds and make some comments on the properties of the corresponding dual gauge theories.
Resumo:
We explore a method developed in statistical physics which has been argued to have exponentially small finite-volume effects, in order to determine the critical temperature Tc of pure SU(3) gauge theory close to the continuum limit. The method allows us to estimate the critical coupling βc of the Wilson action for temporal extents up to Nτ∼20 with ≲0.1% uncertainties. Making use of the scale setting parameters r0 and t0−−√ in the same range of β-values, these results lead to the independent continuum extrapolations Tcr0=0.7457(45) and Tct0−−√=0.2489(14), with the latter originating from a more convincing fit. Inserting a conversion of r0 from literature (unfortunately with much larger errors) yields Tc/ΛMS¯¯¯¯¯=1.24(10).
Resumo:
In the fermion loop formulation the contributions to the partition function naturally separate into topological equivalence classes with a definite sign. This separation forms the basis for an efficient fermion simulation algorithm using a fluctuating open fermion string. It guarantees sufficient tunnelling between the topological sectors, and hence provides a solution to the fermion sign problem affecting systems with broken supersymmetry. Moreover, the algorithm shows no critical slowing down even in the massless limit and can hence handle the massless Goldstino mode emerging in the supersymmetry broken phase. In this paper – the third in a series of three – we present the details of the simulation algorithm and demonstrate its efficiency by means of a few examples.
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics
Resumo:
We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.
Resumo:
We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.