92 resultados para Pyridinic alkaloid analogs
Resumo:
While incretins are of great interest for the therapy of diabetes 2, the focus has recently been brought to the thyroid, since rodents treated with glucagon-like peptide-1 (GLP-1) analogs were found to occasionally develop medullary thyroid carcinomas. Incretin receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) were therefore measured in various rodent and human thyroid conditions. In vitro GLP-1 and GIP receptor autoradiography were performed in normal thyroids, C-cell hyperplasia and medullary thyroid carcinomas in rodents. Receptor incidence and density were assessed and compared with the receptor expression in human thyroids, medullary thyroid carcinomas, and TT cells. GLP-1 receptors are expressed in C cells of normal rat and mice thyroids. Their density is markedly increased in rat C-cell hyperplasia and medullary thyroid carcinomas, where their incidence amounts to 100%. GIP receptors are neither detected in normal rodent thyroids nor in C-cell hyperplasia, but are present in all rat medullary thyroid carcinomas. No GLP-1 or GIP receptors are detected in normal human thyroids. Whereas only 27% of all human medullary thyroid carcinomas express GLP-1 receptors, up to 89% express GIP receptors in a high density. TT cells lack GLP-1 receptors but express GIP receptors. GLP-1 receptors are frequently expressed in non-neoplastic and neoplastic C cells in rodents while they are rarely detected in human C-cell neoplasia, suggesting species differences. Conversely, GIP receptors appear to be massively overexpressed in neoplastic C cells in both species. The presence of incretin receptors in thyroid C cell lesions suggests that this organ should be monitored before and during incretin-based therapy of diabetes.
Resumo:
The terminal homologation by CH(2) insertion into the peptides mentioned in the title is described. This involves replacement of the N-terminal amino acid residue by a β(2) - and of the C-terminal amino acid residue by a β(3) -homo-amino acid moiety (β(2) hXaa and β(3) hXaa, resp.; Fig. 1). In this way, the structure of the peptide chain from the N-terminal to the C-terminal stereogenic center is identical, and the modified peptide is protected against cleavage by exopeptidases (Figs. 2 and 3). Neurotensin (NT; 1) and its C-terminal fragment NT(8-13) are ligands of the G-protein-coupled receptors (GPCR) NT1, NT2, NT3, and NT analogs are promising tools to be used in cancer diagnostics and therapy. The affinities of homologated NT analogs, 2b-2e, for NT1 and NT2 receptors were determined by using cell homogenates and tumor tissues (Table 1); in the latter experiments, the affinities for the NT1 receptor are more or less the same as those of NT (0.5-1.3 vs. 0.6 nM). At the same time, one of the homologated NT analogs, 2c, survives in human plasma for 7 days at 37° (Fig. 6). An NMR analysis of NT(8-13) (Tables 2 and 4, and Fig. 8) reveals that this N-terminal NT fragment folds to a turn in CD(3) OH. - In the case of the human analgesic opiorphin (3a), a pentapeptide, and of the HIV-derived B27-KK10 (4a), a decapeptide, terminal homologation (→3b and 4b, resp.) led to a 7- and 70-fold half-life increase in plasma (Fig. 9). With N-terminally homologated NPY, 5c, we were not able to determine serum stability; the peptide consisting of 36 amino acid residues is subject to cleavage by endopetidases. Three of the homologated compounds, 2b, 2c, and 5c, were shown to be agonists (Fig. 7 and 11). A comparison of terminal homologation with other stability-increasing terminal modifications of peptides is performed (Fig. 5), and possible applications of the neurotensin analogs, described herein, are discussed.
Resumo:
Radiolabeled somatostatin analogs represent valuable tools for both in vivo diagnosis and therapy of neuroendocrine tumors (NETs) because of the frequent tumoral overexpression of somatostatin receptors (sst). The 2 compounds most often used in functional imaging with PET are (68)Ga-DOTATATE and (68)Ga-DOTATOC. Both ligands share a quite similar sst binding profile. However, the in vitro affinity of (68)Ga-DOTATATE in binding the sst subtype 2 (sst2) is approximately 10-fold higher than that of (68)Ga-DOTATOC. This difference may affect their efficiency in the detection of NET lesions because it is the sst2 that is predominantly overexpressed in NET. We thus compared the diagnostic value of PET/CT with both radiolabeled somatostatin analogs ((68)Ga-DOTATATE and (68)Ga-DOTATOC) in the same NET patients.
Resumo:
We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHO-G and HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better asses documentary data in a quantitative way.
Resumo:
In this study, we have investigated the role of CD69, an early inducible leukocyte activation receptor, in murine dendritic cell (DC) differentiation, maturation, and migration. Skin DCs and DC subsets present in mouse lymphoid organs express CD69 in response to maturation stimuli. Using a contact sensitization model, we show that skin DCs migrated more efficiently to draining lymph nodes (LNs) in the absence of CD69. This was confirmed by subcutaneous transfer of CD69-/- DCs, which presented an increased migration to peripheral LNs. Two-photon microscopy analysis showed that once DCs reached the LNs, CD69 deficiency did not alter DC interstitial motility in the LNs. Chemotaxis to sphingosine-1-phosphate (S1P) was enhanced in CD69-/- DCs compared with wild-type DCs. Accordingly, we detected a higher expression of S1P receptor type-1 (S1P(1)) by CD69-/- DCs, whereas S1P(3) expression levels were similar in wild-type and CD69-/- DCs. Moreover, in vivo treatment with S1P analogs SEW2871 and FTY720 during skin sensitization reduced skin DC migration to peripheral LNs. These results suggest that CD69 regulates S1P-induced skin DC migration by modulating S1P(1) function. Together, our findings increase our knowledge on DC trafficking patterns in the skin, enabling the development of new directed therapies using DCs for antigen (Ag) delivery.
Resumo:
Intracoronary administration of glycosaminoglycan analogs, including the complement inhibitor dextran sulfate, attenuates myocardial ischemia/reperfusion injury (I/R injury). However, dextran sulfate has a distinct anticoagulatory effect, possibly limiting its use in specific situations in vivo. We therefore developed multimeric tyrosine sulfate (sTyr-PAA), a novel, minimally anticoagulatory, fully synthetic non-carbohydrate-containing polyacrylamide conjugate, for in vivo testing in an acute closed-chest porcine model of acute myocardial infarction.
Resumo:
The role of glucagon-like peptide (GLP)-1-based treatment approaches for type 2 diabetes mellitus (T2DM) is increasing. Although self-monitoring of blood glucose (SMBG) has been performed in numerous studies on GLP-1 analogs and dipeptidyl peptidase-4 inhibitors, the potential role of SMBG in GLP-1-based treatment strategies has not been elaborated. The expert recommendation suggests individualized SMBG strategies in GLP-1-based treatment approaches and suggests simple and clinically applicable SMBG schemes. Potential benefits of SMBG in GLP-1-based treatment approaches are early assessment of treatment success or failure, timely modification of treatment, detection of hypoglycemic episodes, assessment of glucose excursions, and support of diabetes management and diabetes education. Its length and frequency should depend on the clinical setting and the quality of metabolic control. It is considered to play an important role for the optimization of diabetes management in T2DM patients treated with GLP-1-based approaches.
Resumo:
Peptide hormones of the glucagon-like peptide (GLP) family play an increasing clinical role, such as GLP-1 in diabetes therapy. Moreover, GLP receptors are overexpressed in various human tumor types and therefore represent molecular targets for important clinical applications. In particular, virtually all benign insulinomas highly overexpress GLP-1 receptors (GLP-1R). Targeting GLP-1R with the stable GLP-1 analogs (111)In-DOTA/DPTA-exendin-4 offers a new approach to successfully localize these small tumors. This non-invasive technique has the potential to replace the invasive localization of insulinomas by selective arterial stimulation and venous sampling. Malignant insulinomas, in contrast to their benign counterparts, express GLP-1R in only one-third of the cases, while they more often express the somatostatin type 2 receptors. Importantly, one of the two receptors appears to be always expressed in malignant insulinomas. The GLP-1R overexpression in selected cancers is worth to be kept in mind with regard to the increasing use of GLP-1 analogs for diabetes therapy. While the functional role of GLP-1R in neoplasia is not known yet, it may be safe to monitor patients undergoing GLP-1 therapy carefully.
Resumo:
Bombesin receptors are under intense investigation as molecular targets since they are overexpressed in several prevalent solid tumors. We rationally designed and synthesized a series of modified bombesin (BN) peptide analogs to study the influence of charge and spacers at the N-terminus, as well as amino acid substitutions, on both receptor binding affinity and pharmacokinetics. This enabled development of a novel (64/67)Cu-labeled BN peptide for PET imaging and targeted radiotherapy of BN receptor-positive tumors. Our results show that N-terminally positively charged peptide ligands had significantly higher affinity to human gastrin releasing peptide receptor (GRPr) than negatively charged or uncharged ligands (IC(50): 3.2±0.5 vs 26.3±3.5 vs 41.5±2.5 nM). The replacement of Nle(14) by Met, and deletion of D-Tyr(6), further resulted in 8-fold higher affinity. Contrary to significant changes to human GRPr binding, modifications at the N-terminal and at the 6(th), 11(th), and 14(th) position of BN induced only slight influences on affinity to mouse GRPr. [Cu(II)]-CPTA-[βAla(11)] BN(7-14) ([Cu(II)]-BZH7) showed the highest internalization rate into PC-3 cells with relatively slow efflux because of its subnanomolar affinity to GRPr. Interestingly, [(64/67)Cu]-BZH7 also displayed similar affinities to the other 2 human BN receptor subtypes. In vivo studies showed that [(64/67)Cu]-BZH7 had a high accumulation in PC-3 xenografts and allowed for clear-cut visualization of the tumor in PET imaging. In addition, a CPTA-glycine derivative, forming a hippurane-type spacer, enhanced kidney clearance of the radiotracer. These data indicate that the species variation of BN receptor plays an important role in screening radiolabeled BN. As well, the positive charge from the metallated complex at the N-terminal significantly increases affinity to human GRPr. Application of these observations enabled the novel ligand [(64/67)Cu]-BZH7 to clearly visualize PC-3 tumors in vivo. This study provides a strong starting point for optimizing radiopeptides for targeting carcinomas that express any of the BN receptor subtypes.
Resumo:
Chelated somatostatin agonists have been shown to be sensitive to N-terminal radiometal modifications, with Ga-DOTA agonists having significantly higher binding affinity than their Lu-, In-, and Y-DOTA correlates. Recently, somatostatin antagonists have been successfully developed as alternative tracers to agonists. The aim of this study was to evaluate whether chelated somatostatin antagonists are also sensitive to radiometal modifications and how. We have synthesized 3 different somatostatin antagonists, DOTA-p-NO(2)-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2) (DOTA-JR11), and DOTA-p-Cl-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), and added various radiometals including In(III), Y(III), Lu(III), Cu(II), and Ga(III). We also replaced DOTA with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and added Ga(III). The binding affinity of somatostatin receptors 1 through 5 was evaluated in all cases. In all 3 resulting antagonists, the Ga-DOTA analogs were the lowest-affinity radioligands, with a somatostatin receptor 2 binding affinity up to 60 times lower than the respective Y-DOTA, Lu-DOTA, or In-DOTA compounds. Interestingly, however, substitution of DOTA by the NODAGA chelator was able to increase massively its binding affinity in contrast to the Ga-DOTA analog. The 3 NODAGA analogs are antagonists in functional tests. In vivo biodistribution studies comparing (68)Ga-DOTATATE agonist with (68)Ga-DOTA-JR11 and (68)Ga-NODAGA-JR11 showed not only that the JR11 antagonist radioligands were superior to the agonist ligands but also that (68)Ga-NODAGA-JR11 was the tracer of choice and preferable to (68)Ga-DOTA-JR11 in transplantable HEK293-hsst(2) tumors in mice. One may therefore generalize that somatostatin receptor 2 antagonists are sensitive to radiometal modifications and may preferably be coupled with a (68)Ga-NODAGA chelator-radiometal complex.
Resumo:
Antifibrinolytic agents are often used in different clinical situations, especially in cardiac surgery. During several years, aprotinin was the drug of choice because more than antifibrinolytic properties, aprotinin offers a direct effect on kallikrein and inflammatory pathways. In 2008, The Blood Conservation Using Antifibrinolytics in a Randomized Trial (BART) initiated a discussion about real risks associated with aprotinin administration. Tranexamic acid and epsilon-aminocaproic acid appear to be interesting alternatives in our daily practice. The exact mechanism of action, the pharmacokinetic parameters, the efficacy, and the safety profile need to be clarified for lysine analogs. In this review, the different antifibrinolytics will be described with a special interest into the route of work, and recent patents. Current studies about the pharmacokinetic and the pharmacodynamic profile will be described, and finally the benefit-to-risk balance in patients undergoing cardiac surgery with cardiopulmonary bypass will be discussed.
Resumo:
Colchicine is a highly active alkaloid used in the treatment of acute inflammatory syndromes such as Mediterranean fever, M. Behçet or gouty arthritis. The two cases we present here illustrate exemplarily the pros and contras of colchicine therapy. In the first case, colchicine was successfully given for recurrent febrile attacks due to acute rheumatic fever. The second patient unfortunately had a fatal colchicine intoxication. The pharmacology of colchicine, the clinical features associated with overdose and the options for treatment are discussed. Colchicine should not be given in combination with macrolides, especially in patients with renal insufficiency.
Resumo:
The uptake of radiolabeled somatostatin analogs by tumor cells through receptor-mediated internalization is a critical process for the in vivo targeting of tumoral somatostatin receptors. In the present study, the somatostatin receptor internalization induced by a variety of somatostatin analogs was measured with new immunocytochemical methods that allow characterization of trafficking of the somatostatin receptor subtype 2 (sst2), somatostatin receptor subtype 3 (sst3), and somatostatin receptor subtype 5 (sst5) in vitro at the protein level. METHODS: Human embryonic kidney 293 (HEK293) cells expressing the sst2, sst3, or the sst5 were used in a morphologic immunocytochemical internalization assay using specific sst2, sst3 and sst5 antibodies to qualitatively and quantitatively determine the capability of somatostatin agonists or antagonists to induce somatostatin receptor internalization. In addition, the internalization properties of a selection of these agonists have been compared and quantified in sst2-expressing CHO-K1 cells using an ELISA. RESULTS: Agonists with a high sst2-binding affinity were able to induce sst2 internalization in the HEK293 and CHO-K1 cell lines. New sst2 agonists, such as Y-DOTA-TATE, Y-DOTA-NOC, Lu-DOTA-BOC-ATE (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; TATE is [Tyr3, Thr8]-octreotide; NOC is [1-NaI3]-octreotide; and BOC-ATE is [BzThi3, Thr8]-octreotide), iodinated sugar-containing octreotide analogs, or BIM-23244 were considerably more potent in internalizing sst2 than was DTPA-octreotide (where DTPA is diethylenetriaminepentaacetic acid). Similarly, compounds with high sst3 affinity such as KE108 were able to induce sst3 internalization. In sst2- or sst3-expressing cell lines, agonist-induced receptor internalization was efficiently abolished by sst2- or sst3-selective antagonists, respectively. Antagonists alone had no effect on sst2 or sst3 internalization. We also showed that somatostatin-28 and somatostatin-14 can induce sst5 internalization. Unexpectedly, however, potent sst5 agonists such as KE108, BIM-23244, and L-817,818 were not able to induce sst5 internalization under the same conditions. CONCLUSION: Using sensitive and reproducible immunocytochemical methods, the ability of various somatostatin analogs to induce sst2, sst3, and sst5 internalization has been qualitatively and quantitatively determined. Whereas all agonists triggered sst2 and sst3 internalization, sst5 internalization was induced by natural somatostatin peptides but not by synthetic high-affinity sst5 agonists. Such assays will be of considerable help for the future characterization of ligands foreseen for nuclear medicine applications.
Resumo:
The prototypes for tumor targeting with radiolabeled peptides are derivatives of somatostatin. Usually, they primarily have high affinity for somatostatin receptor subtype 2 (sst2), and they have moderate affinity for sst5. We aimed at developing analogs that recognize different somatostatin receptor subtypes for internal radiotherapy in order to extend the present range of accessible tumors. We synthesized DOTA-octapeptides based on octreotide by replacing Phe3 mainly with unnatural amino acids. The affinity profile was determined by using cell lines transfected with sst1-5. Internalization was determined by using AR42J, HEK-sst3, and HEK-sst5 cell lines, and biodistribution was studied in rat tumor models. Two of the derivatives thus obtained showed an improved binding affinity profile, enhanced internalization into cells expressing sst2 and sst3, respectively, and better tumor:kidney ratios in animals.
Resumo:
Using nonperoxidic analogs of artemisinin and OZ277 (RBx11160), the strong in vitro antiplasmodial activities of the latter two compounds were shown to be peroxide bond dependent. In contrast, the weak activities of artemisinin and OZ277 against six other protozoan parasites were peroxide bond independent. These data support the iron-dependent artemisinin alkylation hypothesis.