69 resultados para Psp, protein solubility in pepsin
Resumo:
The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.
Resumo:
CONTEXT Lipoid congenital adrenal hyperplasia (CAH) is the most severe form of CAH leading to impaired production of all adrenal and gonadal steroids. Mutations in the gene encoding steroidogenic acute regulatory protein (StAR) cause lipoid CAH. OBJECTIVE We investigated three unrelated patients of Swiss ancestry who all carried novel mutations in the StAR gene. All three subjects were phenotypic females with absent Müllerian derivatives, 46,XY karyotype, and presented with adrenal failure. METHODS AND RESULTS StAR gene analysis showed that one patient was homozygous and the other two were heterozygous for the novel missense mutation L260P. Of the heterozygote patients, one carried the novel missense mutation L157P and one had a novel frameshift mutation (629-630delCT) on the second allele. The functional ability of all three StAR mutations to promote pregnenolone production was severely attenuated in COS-1 cells transfected with the cholesterol side-chain cleavage system and mutant vs. wild-type StAR expression vectors. CONCLUSIONS These cases highlight the importance of StAR-dependent steroidogenesis during fetal development and early infancy; expand the geographic distribution of this condition; and finally establish a new, prevalent StAR mutation (L260P) for the Swiss population.
Resumo:
BACKGROUND/OBJECTIVES High intake of added sweeteners is considered to have a causal role in the pathogenesis of cardiometabolic disorders. Especially, high-fructose intake is regarded as potentially harmful to cardiometabolic health. It may cause not only weight gain but also low-grade inflammation, which represents an independent risk factor for developing type 2 diabetes and cardiovascular disease. In particular, fructose has been suggested to induce plasminogen activator inhibitor-1 (PAI-1) expression in the liver and to increase circulating inflammatory cytokines. We therefore aimed to investigate, whether high-fructose diet has an impact on PAI-1, monocyte chemoattractant protein-1 (MCP-1), e-selectin and C-reactive protein (CRP) concentrations in healthy humans. SUBJECTS/METHODS We studied 20 participants (12 males and 8 females) of the TUebingen FRuctose Or Glucose study. This is an exploratory, parallel, prospective, randomized, single-blinded, outpatient, hypercaloric, intervention study. The participants had a mean age of 30.9 ± 2.1 years and a mean body mass index of 26.0 ± 0.5 kg/m(2) and they received 150 g of either fructose or glucose per day for 4 weeks.Results:There were neither significant changes of PAI-1, MCP-1, e-selectin and CRP after fructose (n=10) and glucose (n=10) intervention nor treatment effects (all P>0.2). Moreover, we did not observe longitudinal associations of the inflammatory parameters with triglycerides, liver fat, visceral fat and body weight in the fructose group. CONCLUSIONS Temporary high-fructose intake does not seem to cause inflammation in apparently healthy people in this secondary analysis of a small feeding trial.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma), a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, including RNA metabolism, microRNA biogenesis and DNA repair. However, the precise cellular function of FUS remains unclear. Recently, mutations in the FUS gene have been found in ∼5% of familial Amyotrophic Lateral Sclerosis, a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are investigating the effects of DNA damage both in the presence or in the absence of FUS. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line expressing a doxycycline-induced shRNA targeting FUS, which specifically depletes the protein. We have found that FUS depletion induces an activation of the DNA damage response (DDR). However, treatment with genotoxic agents did not induce any strong changes in ATM (Ataxia Telangiectasia Mutated)-mediated DDR signaling. Interestingly, genotoxic treatment results in changes in the subcellular localization of FUS in normal cells. We are currently exploring on one hand the mechanism by which FUS depletion leads to DNA damage, and on the other the functional significance of FUS relocalization after genotoxic stress.
Resumo:
Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.
Resumo:
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Resumo:
Binding of CD47 to signal regulatory protein alpha (SIRPα), an inhibitory receptor, negatively regulates phagocytosis. In acute myeloid leukemia (AML), CD47 is overexpressed on peripheral blasts and leukemia stem cells and inversely correlates with survival. Aim of the study was to investigate the correlation between CD47 protein expression by immunohistochemistry (IHC) in a bone marrow (BM) tissue microarray (TMA) and clinical outcome in AML patients. CD47 staining on BM leukemia blasts was scored semi-quantitatively and correlated with clinical parameters and known prognostic factors in AML. Low (scores 0-2) and high (score 3) CD47 protein expression were observed in 75% and 25% of AML patients. CD47 expression significantly correlated with percentage BM blast infiltration and peripheral blood blasts. Moreover, high CD47 expression was associated with nucleophosmin (NPM1) gene mutations. In contrast, CD47 expression did not significantly correlate with overall or progression free survival or response to therapy. In summary, a BM TMA permits rapid and reproducible semi-quantitative analysis of CD47 protein expression by IHC. While CD47 expression on circulating AML blasts has been shown to be a negative prognostic marker for a very defined population of AML patients with NK AML, CD47 expression on AML BM blasts is not.
Resumo:
Autophagy, a fundamental cellular catabolic process, is involved in the development of numerous diseases including cancer. Autophagy seems to have an ambivalent impact on tumor development. While increasing evidence indicates a cytoprotective role for autophagy that can contribute to resistance against chemotherapy and even against the adverse, hypoxic environment of established tumors, relatively few publications focus on the role of autophagy in early tumorigenesis. However, the consensus is that autophagy is inhibitory for the genesis of tumors. To understand this apparent contradiction, more detailed information about the roles of the individual participants in autophagy is needed. This review will address this topic with respect to autophagy-related protein 5 (ATG5), which in several lines of investigation has been ascribed special significance in the autophagic pathway. Furthermore, it was recently shown that an ATG5 deficiency in melanocytes interferes with oncogene-induced senescence, thus promoting melanoma tumorigenesis. Similarly, an ATG5 deficiency resulted in tumors of the lung and liver in experimental mouse models. Taken together, these findings indicate that ATG5 and the autophagy to which it contributes are essential gatekeepers restricting early tumorigenesis in multiple tissues.
Resumo:
OBJECTIVES Levels of inflammatory biomarkers associate with changes of coronary atheroma burden in statin-treated patients with stable coronary artery disease. This study sought to determine changes of plaque composition in vivo in relation to high-sensitivity C-reactive protein (hs-CRP) levels in patients with ST-elevation myocardial infarction (STEMI) receiving high-intensity statin therapy. METHODS The IBIS-4 study performed serial (baseline and 13-month), 2-vessel intravascular ultrasound (IVUS) and radiofrequency-IVUS of the non-infarct-related arteries in patients with STEMI treated with high-intensity statin therapy. The present analysis included 44 patients (80 arteries) with serial measurements of hs-CRP. RESULTS At follow-up, median low-density lipoprotein cholesterol (LDL-C) levels decreased from 126 to 77 mg/dl, HDL-C increased from 44 to 47 mg/dl, and hs-CRP decreased from 1.6 to 0.7 mg/L. Regression of percent atheroma volume (-0.99%, 95% CI -1.84 to -0.14, p = 0.024) was accompanied by reduction of percent fibro-fatty (p = 0.04) and fibrous tissue (p < 0.001), and increase in percent necrotic core (p = 0.006) and dense calcium (p < 0.001). Follow-up levels of hs-CRP, but not LDL-C, correlated with changes in percent necrotic core (p = 0.001) and inversely with percent fibrous tissue volume (p = 0.008). Similarly, baseline-to-follow-up change of hs-CRP correlated with the change in percent necrotic core volume (p = 0.02). CONCLUSIONS In STEMI patients receiving high-intensity statin therapy, stabilization of VH-IVUS-defined necrotic core was confined to patients with lowest on-treatment levels and greatest reduction of hs-CRP. Elevated CRP levels at follow-up may identify progression of high-risk coronary plaque composition despite intensive statin therapy and overall regression of atheroma volume.
Resumo:
This report is aimed at elucidating the effect of mannitol and cold treatments on P uptake and protein phosphorylation in Lemna minor plants. Duckweed p lants were incu bated in the presence of [32P]or [33P]Pi in half-strength phosphate deprived E-medium under constant light regime for 1.5 h. Total plant protein extracts (pellet and supernatant) were then prepared and subjected to IEF x SDS-PAGE. To analyse the effect of the stresses on P uptake and protein labelling, Lemna minor plants were preincubated with 0.1, 0.5 mol · L-1 mannitol and at 4°C respectively, for 4 hours, before adding labelled orthophosphate. The results show that the general protein phosphorylation (including LHCII) is related to the level of P uptake. Radioactive phosphate incorporation is stimulated by a low concentration of mannitol (0.1 mol · L-1) but reduced by 0.5 mol · L-1 mannitol and cold stress in planta. The labelling into proteins is affected neither when stresses were applied to the plants after incubation with labelled orthophosphate, nor after in vitro protein phosphorylation. This indicates that general protein kinase activities in vivo are strictly limited by P uptake. A marked accumulation of soluble hexoses (mainly sucrose, glucose, and fructose) is observed under imposed stress, suggesting that the inhibition of P uptake in response to hyperosmotic and cold stresses is mediated by sugar accumulation in situ. However, metabolisable sugars like glucose did not alter the entry of phosphate at concentrations of 0.5 mol · L-1, showing that the chemical nature of the osmoticum influences P uptake.