41 resultados para Pression pulsatile
Resumo:
BACKGROUND Aortic dissection is a severe pathological condition in which blood penetrates between layers of the aortic wall and creates a duplicate channel - the false lumen. This considerable change on the aortic morphology alters hemodynamic features dramatically and, in the case of rupture, induces markedly high rates of morbidity and mortality. METHODS In this study, we establish a patient-specific computational model and simulate the pulsatile blood flow within the dissected aorta. The k-ω SST turbulence model is employed to represent the flow and finite volume method is applied for numerical solutions. Our emphasis is on flow exchange between true and false lumen during the cardiac cycle and on quantifying the flow across specific passages. Loading distributions including pressure and wall shear stress have also been investigated and results of direct simulations are compared with solutions employing appropriate turbulence models. RESULTS Our results indicate that (i) high velocities occur at the periphery of the entries; (ii) for the case studied, approximately 40% of the blood flow passes the false lumen during a heartbeat cycle; (iii) higher pressures are found at the outer wall of the dissection, which may induce further dilation of the pseudo-lumen; (iv) highest wall shear stresses occur around the entries, perhaps indicating the vulnerability of this region to further splitting; and (v) laminar simulations with adequately fine mesh resolutions, especially refined near the walls, can capture similar flow patterns to the (coarser mesh) turbulent results, although the absolute magnitudes computed are in general smaller. CONCLUSIONS The patient-specific model of aortic dissection provides detailed flow information of blood transport within the true and false lumen and quantifies the loading distributions over the aorta and dissection walls. This contributes to evaluating potential thrombotic behavior in the false lumen and is pivotal in guiding endovascular intervention. Moreover, as a computational study, mesh requirements to successfully evaluate the hemodynamic parameters have been proposed.
Resumo:
Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.
Resumo:
The partial shift from patient to model is a reasonable and necessary paradigm shift in surgery in order to increase patient safety and to adapt to the reduced training time periods in hospitals and increased quality demands. Since 1991 the Vascular International Foundation and School has carried out many training courses with more than 2,500 participants. The modular build training system allows to teach many open vascular and endovascular surgical techniques on lifelike models with a pulsatile circulation. The simulation courses cannot replace training in operating rooms but are suitable for supporting the cognitive and associative stages for achieving motor skills. Scientific evaluation of the courses has continually shown that the training principle established since 1991 can lead to significant learning success. They are extremely useful not only for beginners but also for experienced vascular surgeons. They can help to shorten the learning curve, to learn new techniques or to refine previously used techniques in all stages of professional development. Keywords Advanced training · Advanced training regulations · Training model · Vascular International · Certification
Resumo:
Many end-stage heart failure patients are not eligible to undergo heart transplantation due to organ shortage, and even those under consideration for transplantation might suffer long waiting periods. A better understanding of the hemodynamic impact of left ventricular assist devices (LVAD) on the cardiovascular system is therefore of great interest. Computational fluid dynamics (CFD) simulations give the opportunity to study the hemodynamics in this patient population using clinical imaging data such as computed tomographic angiography. This article reviews a recent study series involving patients with pulsatile and constant-flow LVAD devices in which CFD simulations were used to qualitatively and quantitatively assess blood flow dynamics in the thoracic aorta, demonstrating its potential to enhance the information available from medical imaging.
Resumo:
Mandraka possède de nombreux écosystèmes, dominés surtout par les forêts. Cette zone est située sur la première falaise orientale malgache et affiche des reliefs accidentés (pentes supérieures à 60%). Elle est exposée à un régime climatique à forte influence orientale se traduisant par une humidité permanente et un régime cyclonique fréquent. Les paramètres stationnels sont ainsi rudes, or ils sont écologiquement très importants car plusieurs caractéristiques physionomiques et comportementales des espèces forestières en dépendent. Cette étude s'intéresse à la station forestière de Mandraka, particulièrement à l'arboretum. Ce dernier fût créé dans les années cinquante et est actuellement géré par le Département des Eaux et Forêts. Ce site est actuellement à vocation pédagogique et écotouristique. Son état écologique est inconnu jusqu'à maintenant, et depuis sa création, aucun système n'a été mis en place pour mesurer et suivre sa viabilité. D'où, l'intitulé de ce travail de mémoire : « Définition d'un état zéro et mise en place d'un système de suivi écologique permanent de l'arboretum de la station forestière de Mandraka ». Les objectifs étant de collecter des données concernant l'état écologique actuel du site, d'identifier des indicateurs de suivi pour mesurer sa viabilité, et d'inclure un système de suivi écologique permanent dans une proposition de plan d'aménagement pour l'arboretum. Le suivi est en effet un outil très important pour l'analyse des ressources forestières. Il permet de cadrer toutes les interventions. Les diverses analyses menées lors de cette étude ont révélé une viabilité moyenne de l'arboretum. Cela est induit par une qualité de peuplement moyennement stable, une mortalité élevée (plus de 14%), et un potentiel d'avenir très faible, voire inexistant (taux de régénération à 0%). L'envahissement de la forêt artificielle par les espèces autochtones constitue la pression la plus importante de cet arboretum vu qu'il se trouve au milieu des forêts naturelles. L'analyse sylvicole effectuée sur les deux types dendrologiques révèle que les peuplements de conifères présentent des caractéristiques sylvicoles plus favorables que les feuillus. Ce niveau moyen de viabilité de l'arboretum implique ainsi la proposition d'un plan d'aménagement pour l'améliorer; le suivi est une activité primordiale, d'où la proposition d'un plan de suivi permanent pour l'arboretum. A noter que malgré la considération du critère de représentativité pour l'échantillonnage, toutes les questions ne pourront être répondues du fait que plusieurs mosaïques de peuplements artificiels de différentes espèces constituent l'arboretum, et que chacune de ces espèces plantées ont leurs propres caractéristiques. La mise en place des plots permanents d'observation ne servira ainsi que de référence (Etat zéro), mais on propose de prévoir un suivi intégral ainsi que diverses interventions pour l'arboretum en général. Ce travail constitue ainsi une base de données pour l'arboretum et pour la station forestière de Mandraka, mais il ne représente qu'une des facettes à prendre en considération dans une finalité d'amélioration de la viabilité. L'élaboration de cartes thématiques et d'évolution spatio-temporelle à l'issue de SIG (Système d'Information Géographique) permettra d'enrichir les informations établies et admettra un suivi plus précis.
Resumo:
Purpose: Traditionally, the proximal isovelocity surface area (PISA) is based on the assumption of a single hemisphere (hemispheric PISA), but this technique has not been validated for the quantification of mitral regurgitation (MR) with multiple jets. Methods: The left heart simulator was actuated by a pulsatile pump at various stroke amplitudes. The regurgitant volume (Rvol) passing through the mitral valve phantoms with single and double regurgitant orifices of varying size and interspace was quantified by a flowmeter as reference technique. Color Doppler 3-D full-volumes were obtained, and Rvol were derived from 2-D PISA surfaces on the basis of hemispheric and hemicylindric assumption with one base (partial hemicylindric PISA) or 2 bases (total hemicylindric PISA). Results: 72 regurgitant volumes (Rvol range: 8 to 76 ml/beat) were obtained. Hemispheric PISA Rvol correlated well with reference Rvol by one orifice (R²=0.97; bias -2.7±3.2ml), but less by ≥ one orifice (R²=0.89). When a fusion of two PISAs occured, addition of two hemispheric PISA overestimated Rvol (bias 9.1±12.2ml, fig.1), and single hemispheric PISA underestimated Rvol (bias -12.4±4.9ml). If an integrated approach was used (hemispheric in single orifice, total hemicylindric in two non-fused PISAs and partial hemicylindric in two fused PISAs), the correlation was R²=0.95, bias -1.6±5.6ml (fig.2). In the ROC analysis, the cutoff to detect ≥ moderate-to-severe Rvol (≥45ml) was 42ml (AUC 0.99, sens. 100%, spec. 93%). Conclusions: In MR with two regurgitant jets, the 2-D hemicylindric assumption of the PISA offers a better quantification of Rvol than the hemispheric assumption. Quantification of MR using 2-D PISA requires an integrated approach that considers number of regurgitant orifices and fusion of the PISAs.
Resumo:
Objective: Minimizing resection and preserving leaflet tissue has been previously shown to be beneficial for mitral valve function and leaflet kinematics after repair of acute posterior leaflet prolapse in porcine valves. We examined the effects of different additional methods of mitral valve repair (neochordoplasty, ring annuloplasty, edge-to-edge repair and triangular resection) on hemodynamics at different heart rates in an experimental model. Methods: Severe acute P2 prolapse was created in eight porcine mitral valves by resecting the posterior marginal chordae. Valve hemodynamics was quantified under pulsatile conditions in an in vitro heart simulator before and after surgical manipulation. Mitral regurgitation was corrected using four different methods of repair on the same valve: neochordoplasty with expanded polytetrafluoroethylene sutures alone and together with ring annuloplasty, edge-to-edge repair and triangular resection, both with non-restrictive annuloplasty. Residual mitral valve leak, trans-valvular pressure gradients, flow and cardiac output were measured at 60 and 80 beats/min. A validated statistical linear mixed model was used to analyze the effect of treatment. The p values were calculated using a two-sided Wald test. Results: Only neochordoplasty with expanded polytetrafluoroethylene sutures but without ring annuloplasty achieved similar hemodynamics compared to those of the native mitral valve (p range 0.071-0.901). Trans-valvular diastolic pressure gradients were within a physiologic range but significantly higher than those of the native valve following neochordoplasty with ring annuloplasty (p=0.000), triangular resection (p=0.000) and edge-to-edge repair (p=0.000). Neochordoplasty alone was significantly better in terms of hemodynamic than neochordoplasty with a ring annuloplasty (p=0.000). These values were stable regardless of heart rate or ring size. Conclusions: Neochordoplasty without ring annuloplasty is the only repair technique able to achieve almost native physiological hemodynamics after correction of leaflet prolapse in a porcine experimental model of acute chordal rupture.
Resumo:
OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.
Resumo:
BACKGROUND Low levels of testosterone in men and changes in retinal microvascular calibre are both associated with hypertension and cardiovascular disease risk. Sex hormones are also associated with blood flow in microvascular beds which might be a key intermediate mechanism in the development of hypertension. Whether a direct association between endogenous testosterone and retinal microvascular calibre exists is currently unknown. We aimed to determine whether testosterone is independently associated with ocular perfusion via a possible association with retinal vascular calibre or whether it plays only a secondary role via its effect on blood pressure in a bi-ethnic male cohort. PROBANDS AND METHODS A total of 72 black and 81 white men (28-68 years of age) from the follow-up phase of the Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) study were included in this sub-study. Ambulatory pulse pressure and intraocular perfusion pressures were obtained, while metabolic variables and testosterone were measured from fasting venous blood samples. Retinal vascular calibre was quantified from digital photographs using standardised protocols. RESULTS The black men revealed a poorer cardiometabolic profile and higher pulsatile pressure (>50 mm Hg), intraocular pressure and diastolic ocular perfusion pressure than the white men (p≤0.05). Only in the white men was free testosterone positively associated with retinal calibre, i.e. arterio-venular ratio and central retinal arterial calibre and inversely with central retinal venular calibre. These associations were not found in the black men, independent of whether pulse pressure and ocular perfusion pressure were part of the model. CONCLUSIONS These results suggest an independent, protective effect of testosterone on the retinal vasculature where an apparent vasodilatory response in the retinal resistance microvessels was observed in white men.
Resumo:
The instantaneous three-dimensional velocity field past a bioprosthetic heart valve was measured using tomographic particle image velocimetry (PIV). Two digital cameras were used together with a mirror setup to record PIV images from four different angles. Measurements were conducted in a transparent silicone phantom with a simplified geometry of the aortic root. The refraction indices of the silicone phantom and the working fluid were matched to minimize optical distortion from the flow field to the cameras. The silicone phantom of the aorta was integrated in a flow loop driven by a piston pump. Measurements were conducted for steady and pulsatile flow conditions. Results of the instantaneous, ensemble and phase averaged flow field are presented. The three-dimensional velocity field reveals a flow topology, which can be related to features of the aortic valve prosthesis.
Resumo:
The Lapeyre-Triflo FURTIVA valve aims at combining the favorable hemodynamics of bioprosthetic heart valves with the durability of mechanical heart valves (MHVs). The pivoting region of MHVs is hemodynamically of special interest as it may be a region of high shear stresses, combined with areas of flow stagnation. Here, platelets can be activated and may form a thrombus which in the most severe case can compromise leaflet mobility. In this study we set up an experiment to replicate the pulsatile flow in the aortic root and to study the flow in the pivoting region under physiological hemodynamic conditions (CO = 4.5 L/min / CO = 3.0 L/min, f = 60 BPM). It was found that the flow velocity in the pivoting region could reach values close to that of the bulk flow during systole. At the onset of diastole the three valve leaflets closed in a very synchronous manner within an average closing time of 55 ms which is much slower than what has been measured for traditional bileaflet MHVs. Hot spots for elevated viscous shear stresses were found at the flanges of the housing and the tips of the leaflet ears. Systolic VSS was maximal during mid-systole and reached levels of up to 40 Pa.