50 resultados para Porous bodies
Resumo:
Free-ling amoebae (FLA) including Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris and Sappinia pedata, can cause opportunistic infections leading to severe brain pathologies. Human infections with pathogenic FLA have been increasingly documented in many countries. In Switzerland, thus far, the occurrence and distribution of potentially pathogenic FLA has not been investigated. Swiss water biotopes, including swimming pools, lakes, rivers and ponds, have now been screened for the presence of FLA, and assessment of their pathogenicity potential for a mammalian host has been undertaken. Thus, a total of 17 isolates were recovered by in vitro cultivation from these different aquatic sources. Characterization by sequence analysis of Acanthamoeba spp.-specific and 'FLA-specific PCR products amplified from 18s rDNA based on morphological traits, thermotolerance, and cytotoxicity towards murine fibroblasts yielded the following findings: Echinamoeba cf. exundans (3 isolates), Hartmannella spp. (3), Vannella spp. (4), Protacanthamoebica cf. bohemica (1), Acanthamoeba cf. castellanii (1) and Naegleria spp. (5). B. mandrillaris and N. fowleri did not range amongst these isolates. None of the isolates exhibited pronounced cytotoxicity and all failed to grow at 42 degrees C; therefore, they do not present any potential for CNS pathogenicity for humans.
Resumo:
A molecular, porous crystalline material constructed from neutral helical coordination polymers incorporating manganese(II) ions and two types of bridging ligands, namely the deprotonated form of 2-hydroxy-5-methoxy-3-nitrobenzaldehyde (HL) and isobutyrate (iB−), has been obtained and structurally characterized. Structural analysis reveals that within the coordination polymer each benzaldehyde derivative ligates two manganese ions in 6-membered chelating rings, and the isobutyrate ligands cooperatively chelate either two or three manganese ions. The solid state assembly of the resulting polymeric chains of formula [Mn4(L)2(iB)6]n (1), described in the polar space group R3c, is associated with tubular channels occupied by MeCN solvent molecules (1·xMeCN; x ≤ 9). TGA profiles and PXRD measurements demonstrate that the crystallinity of the solid remains intact in its fully desolvated form, and its stability and crystallinity are ensured up to a temperature of 190 °C. Gas adsorption properties of desolvated crystals were probed, but no remarkable sorption capacity of N2 and only a limited one for CO2 could be observed. Magnetic susceptibility data reveal an antiferromagnetic type of coupling between adjacent manganese(II) ions along the helical chains with energy parameters J1 = −5.9(6) cm−1 and J2 = −1.8(9) cm−1.
Resumo:
Computer tomography (CT)-based finite element (FE) models of vertebral bodies assess fracture load in vitro better than dual energy X-ray absorptiometry, but boundary conditions affect stress distribution under the endplates that may influence ultimate load and damage localisation under post-yield strains. Therefore, HRpQCT-based homogenised FE models of 12 vertebral bodies were subjected to axial compression with two distinct boundary conditions: embedding in polymethylmethalcrylate (PMMA) and bonding to a healthy intervertebral disc (IVD) with distinct hyperelastic properties for nucleus and annulus. Bone volume fraction and fabric assessed from HRpQCT data were used to determine the elastic, plastic and damage behaviour of bone. Ultimate forces obtained with PMMA were 22% higher than with IVD but correlated highly (R2 = 0.99). At ultimate force, distinct fractions of damage were computed in the endplates (PMMA: 6%, IVD: 70%), cortex and trabecular sub-regions, which confirms previous observations that in contrast to PMMA embedding, failure initiated underneath the nuclei in healthy IVDs. In conclusion, axial loading of vertebral bodies via PMMA embedding versus healthy IVD overestimates ultimate load and leads to distinct damage localisation and failure pattern.
Resumo:
Identifying a human body stimulus involves mentally rotating an embodied spatial representation of one's body (motoric embodiment) and projecting it onto the stimulus (spatial embodiment). Interactions between these two processes (spatial and motoric embodiment) may thus reveal cues about the underlying reference frames. The allocentric visual reference frame, and hence the perceived orientation of the body relative to gravity, was modulated using the York Tumbling Room, a fully furnished cubic room with strong directional cues that can be rotated around a participant's roll axis. Sixteen participants were seated upright (relative to gravity) in the Tumbling Room and made judgments about body and hand stimuli that were presented in the frontal plane at orientations of 0°, 90°, 180° (upside down), or 270° relative to them. Body stimuli have an intrinsic visual polarity relative to the environment whereas hands do not. Simultaneously the room was oriented 0°, 90°, 180° (upside down), or 270° relative to gravity resulting in sixteen combinations of orientations. Body stimuli were more accurately identified when room and body stimuli were aligned. However, such congruency did not facilitate identifying hand stimuli. We conclude that static allocentric visual cues can affect embodiment and hence performance in an egocentric mental transformation task. Reaction times to identify either hands or bodies showed no dependence on room orientation.
Resumo:
OBJECTIVE Visuoperceptual deficits are common in dementia with Lewy bodies (DLB) and Alzheimer disease (AD). Testing visuoperception in dementia is complicated by decline in other cognitive domains and extrapyramidal features. To overcome these issues, we developed a computerized test, the Newcastle visuoperception battery (NEVIP), which is independent of motor function and has minimal cognitive load.We aimed to test its utility to identify visuoperceptual deficits in people with dementia. PARTICIPANTS AND MEASUREMENTS We recruited 28 AD and 26 DLB participants with 35 comparison participants of similar age and education. The NEVIP was used to test angle, color, and form discrimination along with motion perception to obtain a composite visuoperception score. RESULTS Those with DLB performed significantly worse than AD participants on the composite visuoperception score (Mann-Whitney U = 142, p = 0.01). Visuoperceptual deficits (defined as 2 SD below the performance of comparisons) were present in 71% of the DLB group and 40% of the AD group. Performance was not significantly correlated with motor impairment, but was significantly related to global cognitive impairment in DLB (rs = -0.689, p <0.001), but not in AD. CONCLUSION Visuoperceptual deficits can be detected in both DLB and AD participants using the NEVIP, with the DLB group performing significantly worse than AD. Visuoperception scores obtained by the NEVIP are independent of participant motor deficits and participants are able to comprehend and perform the tasks.
Resumo:
INTRODUCTION There is little data on stopping cholinesterase inhibitors in Dementia with Lewy bodies (DLB). Equally, it is not known if increasing the dose of cholinesterase inhibitors may help neuropsychiatric symptoms in advanced DLB. METHOD We conducted an open label trial with donepezil involving 16 patients with LBD when the dose was reduced and treatment stopped over 4 weeks. Another 7 patients were given a trial of an increased dose of donepezil (15 mg) to resolve rehyphen;emergent neuropsychiatric symptoms. RESULTS The slow discontinuation protocol was well tolerated in advanced DLB. Five of the seven patients given a trial of a higher dose of donepezil were rated as clinically improved after 12 weeks treatment. CONCLUSION Cholinesterase inhibitors can be discontinued slowly in advanced DLB. Increasing the dose of donepezil may be of benefit to some patients with DLB who experience a recurrence in their neuropsychiatric symptoms.
Resumo:
OBJECTIVE The objective of this study was to compare functional impairments in dementia with Lewy bodies (DLB) and Alzheimer disease (AD) and their relationship with motor and neuropsychiatric symptoms. METHODS The authors conducted a cross-sectional study of 84 patients with DLB or AD in a secondary care setting. Patients were diagnosed according to published criteria for DLB and AD. The Bristol Activities of Daily Living Scale (BADLS) was used to assess functional impairments. Participants were also assessed using the Unified Parkinson's Disease Rating Scale (motor section), the Neuropsychiatric Inventory, and the Mini-Mental Status Examination. RESULTS Patients with DLB were more functionally impaired and had more motor and neuropsychiatric difficulties than patients with AD with similar cognitive scores. In both AD and DLB, there were correlations between total BADLS scores and motor and neuropsychiatric deficits. There was more impairment in the mobility and self-care components of the BADLS in DLB than in AD, and in DLB, these were highly correlated with UPDRS score. In AD, orientation and instrumental BADLS components were most affected. CONCLUSION The nature of functional disability differs between AD and DLB with additional impairments in mobility and self-care in DLB being mainly attributable to extrapyramidal motor symptoms. Consideration of these is important in assessment and management. Activities of daily living scales for use in this population should attribute the extent to which functional disabilities are related to cognitive, psychiatric, or motor dysfunction.
Characteristics of visual hallucinations in Parkinson disease dementia and dementia with Lewy bodies
Resumo:
OBJECTIVE Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB) have overlapping clinical and pathologic features. Recurrent visual hallucinations (RVH) are common in both disorders. The authors have compared details of hallucination characteristics and associated neuropsychiatric features in DLB and PDD. METHODS This is a descriptive, cross-sectional study using the Institute of Psychiatry Visual Hallucinations Interview (IP-VHI) to explore self-reported frequency, duration, and phenomenology of RVH in PDD and DLB. The caregivers' ratings of hallucinations and other neuropsychiatric features were elicited with the Neuropsychiatric Inventory (NPI). RESULTS Fifty-six patients (35 PDD; 21 DLB) with RVH were assessed. Hallucination characteristics were similar in both disorders. Simple hallucinations were rare. Most patients experienced complex hallucinations daily, normally lasting minutes. They commonly saw people or animals and the experiences were usually perceived as unpleasant. NPI anxiety scores were higher in PDD. Neuropsychiatric symptoms coexisting with hallucinations were apathy, sleep disturbance, and anxiety. CONCLUSIONS Patients with mild to moderate dementia can provide detailed information about their hallucinations. Characteristics of RVH were similar in PDD and DLB, and phenomenology suggests the involvement of dorsal and ventral visual pathways in their generation. The coexistence of RVH with anxiety, apathy, and sleep disturbance is likely to impair patients' quality of life and may have treatment implications.
Resumo:
Fluctuations in consciousness and visual hallucinations are common neuropsychiatric features of dementia with Lewy bodies and Parkinson's disease dementia. To investigate potential neural correlates, we compared how changes in brain perfusion over a 1-year period were related to changes in the severity of these key clinical features. We recruited 29 subjects with either Parkinson's disease with dementia (15 subjects) or dementia with Lewy bodies (14 subjects). Cerebral perfusion was measured using HMPAO SPECT at baseline, and repeated 1 year later. The presence of hallucinations (Neuropsychiatric Inventory), severity of fluctuations in consciousness (fluctuation assessment scale) and cognitive ability (CAMCOG) were assessed at both time points. After controlling for changes in cognitive ability and effect of cholinesterase medication, we found a significant correlation between an increase in perfusion in midline posterior cingulate and decrease in hallucination severity. There was also a significant correlation between increased fluctuations of consciousness and increased thalamic and decreased inferior occipital perfusion. We have identified important neural correlates of key clinical features in Lewy body dementia and postulate that the associations can be understood through the influence of the cholinergic system on attention.
Resumo:
Neurodegeneration in Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) affect cortical and subcortical networks involved in saccade generation. We therefore expected impairments in saccade performance in both disorders. In order to improve the pathophysiological understanding and to investigate the usefulness of saccades for differential diagnosis, saccades were tested in age- and education-matched patients with PDD (n = 20) and DLB (n = 20), Alzheimer's disease (n = 22) and Parkinson's disease (n = 24), and controls (n = 24). Reflexive (gap, overlap) and complex saccades (prediction, decision and antisaccade) were tested with electro-oculography. PDD and DLB patients had similar impairment in all tasks (P > 0.05, not significant). Compared with controls, they were impaired in both reflexive saccade execution (gap and overlap latencies, P < 0.0001; gains, P < 0.004) and complex saccade performance (target prediction, P < 0.0001; error decisions, P < 0.003; error antisaccades: P < 0.0001). Patients with Alzheimer's disease were only impaired in complex saccade performance (Alzheimer's disease versus controls, target prediction P < 0.001, error decisions P < 0.0001, error antisaccades P < 0.0001), but not reflexive saccade execution (for all, P > 0.05). Patients with Parkinson's disease had, compared with controls, similar complex saccade performance (for all, P > 0.05) and only minimal impairment in reflexive tasks, i.e. hypometric gain in the gap task (P = 0.04). Impaired saccade execution in reflexive tasks allowed discrimination between DLB versus Alzheimer's disease (sensitivity > or =60%, specificity > or =77%) and between PDD versus Parkinson's disease (sensitivity > or =60%, specificity > or =88%) when +/-1.5 standard deviations was used for group discrimination. We conclude that impairments in reflexive saccades may be helpful for differential diagnosis and are minimal when either cortical (Alzheimer's disease) or nigrostriatal neurodegeneration (Parkinson's disease) exists solely; however, they become prominent with combined cortical and subcortical neurodegeneration in PDD and DLB. The similarities in saccade performance in PDD and DLB underline the overlap between these conditions and underscore differences from Alzheimer's disease and Parkinson's disease.
Resumo:
OBJECTIVE To quantify visual discrimination, space-motion, and object-form perception in patients with Parkinson disease dementia (PDD), dementia with Lewy bodies (DLB), and Alzheimer disease (AD). METHODS The authors used a cross-sectional study to compare three demented groups matched for overall dementia severity (PDD: n = 24; DLB: n = 20; AD: n = 23) and two age-, sex-, and education-matched control groups (PD: n = 24, normal controls [NC]: n = 25). RESULTS Visual perception was globally more impaired in PDD than in nondemented controls (NC, PD), but was not different from DLB. Compared to AD, PDD patients tended to perform worse in all perceptual scores. Visual perception of patients with PDD/DLB and visual hallucinations was significantly worse than in patients without hallucinations. CONCLUSIONS Parkinson disease dementia (PDD) is associated with profound visuoperceptual impairments similar to dementia with Lewy bodies (DLB) but different from Alzheimer disease. These findings are consistent with previous neuroimaging studies reporting hypoactivity in cortical areas involved in visual processing in PDD and DLB.
Resumo:
This article reviews the cholinergic changes in Parkinson's disease and dementia (PDD) and dementia with Lewy bodies (DLB), their potential clinical implications, and the available evidence for cholinesterase inhibitors in the treatment of PDD and DLB. Marked neuronal loss of cholinergic nuclei, reduced cholinergic markers in the neocortex, hippocampus, and selected thalamic nuclei, and receptor changes have been reported. One large and 2 small placebo-controlled trials and nearly 20 open-label studies suggest that cholinesterase inhibitors have a positive effect on cognition, psychiatric symptoms, and global function in patients with DLB and PDD. The treatment is well tolerated in most patients without any apparent worsening of extrapyramidal motor features. Given the high risk of severe sensitivity reactions and increased risk of cerebrovascular incidents during treatment with neuroleptics, more clinical trials of cholinesterase inhibitors are encouraged to establish their precise role in DLB and PDD.
Resumo:
Lewy bodies (LB) in the central nervous system are associated with several different clinical syndromes including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Long term follow up of PD patients finds up to 78% eventually develop dementia, most of these patients exhibiting fluctuating cognition and visual hallucinations similar to DLB and with extensive cortical LB at autopsy. alpha-Synuclein positive, neuritic pathology, in the putamen of DLB and Parkinson's disease dementia (PDD), may contribute to postural-instability gait difficulty, parkinsonism, diminished levodopa responsiveness and increased neuroleptic sensitivity. Cognitive and neuropsychiatric symptoms improve with cholinesterase inhibitor treatment in both patient groups. DLB and PDD should be seen as different points on a spectrum of LB disease. Distinguishing them as separate disorders may be useful in clinical practice, but may be of limited value in terms of investigating and treating the underlying neurobiology.
Resumo:
Dementia with Lewy bodies (DLB) accounts for 15-20% of all autopsy confirmed dementias in old age. Characteristic histopathological changes are intracellular Lewy bodies and Lewy neurites, with abundant senile plaques but sparse neurofibrillary tangles. Core clinical features are fluctuating cognitive impairment, persistent visual hallucinations and extrapyramidal motor symptoms (parkinsonism). One of these core features has to be present for a diagnosis of possible DLB, and two for probable DLB. Supportive features are repeated falls, syncope, transient loss of consciousness, neuroleptic sensitivity, delusions and hallucinations in other modalities. DLB is clinically under-diagnosed and frequently misclassified as systemic delirium or dementia due to Alzheimer's disease or cerebrovascular disease. Therapeutic approaches to DLB can pose difficult dilemmas in pharmacological management. Neuroleptic medication is relatively contraindicated because some patients show severe neuroleptic sensitivity, which is associated with increased morbidity and mortality. Antiparkinsonian medication has the potential to exacerbate psychotic symptoms and may be relatively ineffective at relieving extrapyramidal motor symptoms. Recently there is converging evidence that treatment with cholinesterase inhibitors can offer a safe alternative for the symptomatic treatment of cognitive and neuropsychiatric features in DLB. This review will focus on the clinical characteristics of DLB, its differential diagnosis and on possible management strategies.