33 resultados para Playful Computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Percentile shares provide an intuitive and easy-to-understand way for analyzing income or wealth distributions. A celebrated example are the top income shares sported by the works of Thomas Piketty and colleagues. Moreover, series of percentile shares, defined as differences between Lorenz ordinates, can be used to visualize whole distributions or changes in distributions. In this talk, I present a new command called pshare that computes and graphs percentile shares (or changes in percentile shares) from individual level data. The command also provides confidence intervals and supports survey estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Percentile shares provide an intuitive and easy-to-understand way for analyzing income or wealth distributions. A celebrated example is the top income shares sported by the works of Thomas Piketty and colleagues. Moreover, series of percentile shares, defined as differences between Lorenz ordinates, can be used to visualize whole distributions or changes in distributions. In this talk, I present a new command called pshare that computes and graphs percentile shares (or changes in percentile shares) from individual level data. The command also provides confidence intervals and supports survey estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.