38 resultados para Phytic Acid -- metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n=25) or a restriction group (RES; 70% of energy requirements; n=25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The onset of lactation in dairy cows represents a major metabolic challenge that involves large adaptations in glucose, fatty acid, and mineral metabolism to support lactation and to avoid metabolic dysfunction. The complex system of adaptation can differ considerably between cows, and may have a genetic base. In the present review, the variation in adaptive reactions in dairy cows is discussed. In these studies, the liver being a key metabolic regulator for understanding the variation in adaptive performance of the dairy cow was the main focus of research. Liver function was evaluated through gene expression measurements; to explain the associated phenotypic variability and to identify descriptors for metabolic robustness in dairy cows. Hence, the identified genes involved act as a connecting link between the genotype encoded on the DNA and the phenotypic expression of the target factors at a protein level. The integration of phenotypic data, including gene expression profiles, and genomic data will facilitate a better characterization of the complex interplay between these levels, and will improve the genetic understanding necessary to unravel a certain trait or multi-trait such as metabolic robustness in dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is one of the commonest causes of death from cancer. A plethora of metabolomic investigations of HCC have yielded molecules in biofluids that are both up- and down-regulated but no real consensus has emerged regarding exploitable biomarkers for early detection of HCC. We report here a different approach, a combined transcriptomics and metabolomics study of energy metabolism in HCC. A panel of 31 pairs of HCC tumors and corresponding nontumor liver tissues from the same patients was investigated by gas chromatography-mass spectrometry (GCMS)-based metabolomics. HCC was characterized by ∼2-fold depletion of glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, and linoleic acid. Data are consistent with a metabolic remodeling involving a 4-fold increase in glycolysis over mitochondrial oxidative phosphorylation. A second panel of 59 HCC that had been typed by transcriptomics and classified in G1 to G6 subgroups was also subjected to GCMS tissue metabolomics. No differences in glucose, lactate, alanine, glycerol 3-phosphate, malate, myo-inositol, or stearic acid tissue concentrations were found, suggesting that the Wnt/β-catenin pathway activated by CTNNB1 mutation in subgroups G5 and G6 did not exhibit specific metabolic remodeling. However, subgroup G1 had markedly reduced tissue concentrations of 1-stearoylglycerol, 1-palmitoylglycerol, and palmitic acid, suggesting that the high serum α-fetoprotein phenotype of G1, associated with the known overexpression of lipid catabolic enzymes, could be detected through metabolomics as increased lipid catabolism. Conclusion: Tissue metabolomics yielded precise biochemical information regarding HCC tumor metabolic remodeling from mitochondrial oxidation to aerobic glycolysis and the impact of molecular subtypes on this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular availability of glucocorticoids is regulated by the enzymes 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) and 11β-hydroxysteroid dehydrogenase 2 (HSD11B2). The activity of HSD11B1 is measured in the urine based on the (tetrahydrocortisol+5α-tetrahydrocortisol)/tetrahydrocortisone ((THF+5α-THF)/THE) ratio in humans and the (tetrahydrocorticosterone+5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB+5α-THB)/THA) ratio in mice. The cortisol/cortisone (F/E) ratio in humans and the corticosterone/11-dehydrocorticosterone (B/A) ratio in mice are markers of the activity of HSD11B2. In vitro agonist treatment of liver X receptor (LXR) down-regulates the activity of HSD11B1. Sterol 27-hydroxylase (CYP27A1) catalyses the first step in the alternative pathway of bile acid synthesis by hydroxylating cholesterol to 27-hydroxycholesterol (27-OHC). Since 27-OHC is a natural ligand for LXR, we hypothesised that CYP27A1 deficiency may up-regulate the activity of HSD11B1. In a patient with cerebrotendinous xanthomatosis carrying a loss-of-function mutation in CYP27A1, the plasma concentrations of 27-OHC were dramatically reduced (3.8 vs 90-140 ng/ml in healthy controls) and the urinary ratios of (THF+5α-THF)/THE and F/E were increased, demonstrating enhanced HSD11B1 and diminished HSD11B2 activities. Similarly, in Cyp27a1 knockout (KO) mice, the plasma concentrations of 27-OHC were undetectable (<1 vs 25-120 ng/ml in Cyp27a1 WT mice). The urinary ratio of (THB+5α-THB)/THA was fourfold and that of B/A was twofold higher in KO mice than in their WT littermates. The (THB+5α-THB)/THA ratio was also significantly increased in the plasma, liver and kidney of KO mice. In the liver of these mice, the increase in the concentrations of active glucocorticoids was due to increased liver weight as a consequence of Cyp27a1 deficiency. In vitro, 27-OHC acts as an inhibitor of the activity of HSD11B1. Our studies suggest that the expression of CYP27A1 modulates the concentrations of active glucocorticoids in both humans and mice and in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma anion gap is a frequently used parameter in the clinical diagnosis of a variety of conditions. The commonest application of the anion gap is to classify cases of metabolic acidosis into those that do and those that do not leave unmeasured anions in the plasma. While this algorithm is useful in streamlining the diagnostic process, it should not be used solely in this fashion. The anion gap measures the difference between the unmeasured anions and unmeasured cations and thus conveys much more information to the clinician than just quantifying anions of strong acids. In this chapter, the significance of the anion gap is emphasized and several examples are given to illustrate a more analytic approach to using the clinical anion gap; these include disorders of low anion gap, respiratory alkalosis and pyroglutamic acidosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Androgens are essential for sexual development and reproduction. However, androgen regulation in health and disease is poorly understood. We showed that human adrenocortical H295R cells grown under starvation conditions acquire a hyperandrogenic steroid profile with changes in steroid metabolizing enzymes HSD3B2 and CYP17A1 essential for androgen production. Here we studied the regulatory mechanisms underlying androgen production in starved H295R cells. Microarray expression profiling of normal versus starved H295R cells revealed fourteen differentially expressed genes; HSD3B2, HSD3B1, CYP21A2, RARB, ASS1, CFI, ASCL1 and ENC1 play a role in steroid and energy metabolism and ANGPTL1, PLK2, DUSP6, DUSP10 and FREM2 are involved in signal transduction. We discovered two new gene networks around RARB and ANGPTL1, and show how they regulate androgen biosynthesis. Transcription factor RARB stimulated the promoters of genes involved in androgen production (StAR, CYP17A1 and HSD3B2) and enhanced androstenedione production. For HSD3B2 regulation RARB worked in cooperation with Nur77. Secretory protein ANGPTL1 modulated CYP17A1 and DUSP6 expression by inducing ERK1/2 phosphorylation. By contrast, our studies revealed no evidence for hormones or cell cycle involvement in regulating androgen biosynthesis. In summary, these studies establish a firm role for RARB and ANGPTL1 in the regulation of androgen production in H295R cells.