37 resultados para Person Tracking, Depth, Motion Detection
Resumo:
Attractive business cases in various application fields contribute to the sustained long-term interest in indoor localization and tracking by the research community. Location tracking is generally treated as a dynamic state estimation problem, consisting of two steps: (i) location estimation through measurement, and (ii) location prediction. For the estimation step, one of the most efficient and low-cost solutions is Received Signal Strength (RSS)-based ranging. However, various challenges - unrealistic propagation model, non-line of sight (NLOS), and multipath propagation - are yet to be addressed. Particle filters are a popular choice for dealing with the inherent non-linearities in both location measurements and motion dynamics. While such filters have been successfully applied to accurate, time-based ranging measurements, dealing with the more error-prone RSS based ranging is still challenging. In this work, we address the above issues with a novel, weighted likelihood, bootstrap particle filter for tracking via RSS-based ranging. Our filter weights the individual likelihoods from different anchor nodes exponentially, according to the ranging estimation. We also employ an improved propagation model for more accurate RSS-based ranging, which we suggested in recent work. We implemented and tested our algorithm in a passive localization system with IEEE 802.15.4 signals, showing that our proposed solution largely outperforms a traditional bootstrap particle filter.
Resumo:
Long-term electrocardiogram (ECG) signals might suffer from relevant baseline disturbances during physical activity. Motion artifacts in particular are more pronounced with dry surface or esophageal electrodes which are dedicated to prolonged ECG recording. In this paper we present a method called baseline wander tracking (BWT) that tracks and rejects strong baseline disturbances and avoids concurrent saturation of the analog front-end. The proposed algorithm shifts the baseline level of the ECG signal to the middle of the dynamic input range. Due to the fast offset shifts, that produce much steeper signal portions than the normal ECG waves, the true ECG signal can be reconstructed offline and filtered using computationally intensive algorithms. Based on Monte Carlo simulations we observed reconstruction errors mainly caused by the non-linearity inaccuracies of the DAC. However, the signal to error ratio of the BWT is higher compared to an analog front-end featuring a dynamic input ranges above 15 mV if a synthetic ECG signal was used. The BWT is additionally able to suppress (electrode) offset potentials without introducing long transients. Due to its structural simplicity, memory efficiency and the DC coupling capability, the BWT is dedicated to high integration required in long-term and low-power ECG recording systems.
Resumo:
In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the basal functionality of peripheral vision in those sports-games situations, a Multiple Object Tracking (MOT) task that requires to track a certain number of targets amidst distractors, was chosen. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). While eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time as well as saccadic reaction time were calculated as dependent variables. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.
Resumo:
In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the capability of using peripheral vision in those sports-games situations, a Multiple-Object-Tracking task that requires to track a certain number of targets amidst distractors, was chosen to determine the sensitivity of detecting target changes with peripheral vision only. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). Eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time and saccadic reaction time (change onset to saccade onset) were calculated and eye-movements were recorded. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.
Resumo:
Purpose: Cardiomyocytes are terminally differentiated cells in the adult heart and ischemia and cardiotoxic compounds can lead to cell death and irreversible decline of cardiac function. As testing platforms, isolated organs and primary cells from rodents have been the standard in research and toxicology, but there is a need for better models that more faithfully recapitulate native human biology. Hence, a new in vitro model comprising the advantages of 3D cell culture and the availability of induced pluripotent stem cells (iPSC) from human origin was developed and characterized. Methods: Human cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) were studied in standard 2D culture and as cardiac microtissues (MTs) formed in hanging drops. 2D cultures were examined using immunofluorescence microscopy and Western blotting while the cardiac MTs were subjected to immunofluorescence, contractility, and pharmacological investigations. Results: iPSC-derived CMs in 2D culture showed well-formed myofibrils, cell-cell contacts positive for connexin-43, and other typical cardiac proteins. The cells reacted to pro-hypertrophic growth factors with a substantial increase in myofibrils and sarcomeric proteins. In hanging drop cultures, iPSC-derived cardiomyocytes formed spheroidal MTs within 4 days showing a homogeneous tissue structure with well-developed myofibrils extending throughout the whole spheroid without a necrotic core. MTs showed spontaneous contractions for more than 4 weeks that were recorded by optical motion tracking, sensitive to temperature, and responsive to electrical pacing. Contractile pharmacology was tested with several agents known to modulate cardiac rate and viability. Calcium-transients underlay the contractile activity and were also responsive to electrical stimulation, caffeine-induced Ca2+-release, extracellular calcium levels. Conclusions: 3D culture using iPSC-derived human cardiomyocytes provides an organoid human-based cellular platform that is free of necrosis and recapitulates vital cardiac functionality, thereby providing new and promising relevant model for the evaluation and development of new therapies and detection of cardiotoxicity.
Resumo:
Current methods for detection of copy number variants (CNV) and aberrations (CNA) from targeted sequencing data are based on the depth of coverage of captured exons. Accurate CNA determination is complicated by uneven genomic distribution and non-uniform capture efficiency of targeted exons. Here we present CopywriteR, which eludes these problems by exploiting 'off-target' sequence reads. CopywriteR allows for extracting uniformly distributed copy number information, can be used without reference, and can be applied to sequencing data obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene panels. CopywriteR outperforms existing methods and constitutes a widely applicable alternative to available tools.
Resumo:
BACKGROUND The choice of imaging techniques in patients with suspected coronary artery disease (CAD) varies between countries, regions, and hospitals. This prospective, multicenter, comparative effectiveness study was designed to assess the relative accuracy of commonly used imaging techniques for identifying patients with significant CAD. METHODS AND RESULTS A total of 475 patients with stable chest pain and intermediate likelihood of CAD underwent coronary computed tomographic angiography and stress myocardial perfusion imaging by single photon emission computed tomography or positron emission tomography, and ventricular wall motion imaging by stress echocardiography or cardiac magnetic resonance. If ≥1 test was abnormal, patients underwent invasive coronary angiography. Significant CAD was defined by invasive coronary angiography as >50% stenosis of the left main stem, >70% stenosis in a major coronary vessel, or 30% to 70% stenosis with fractional flow reserve ≤0.8. Significant CAD was present in 29% of patients. In a patient-based analysis, coronary computed tomographic angiography had the highest diagnostic accuracy, the area under the receiver operating characteristics curve being 0.91 (95% confidence interval, 0.88-0.94), sensitivity being 91%, and specificity being 92%. Myocardial perfusion imaging had good diagnostic accuracy (area under the curve, 0.74; confidence interval, 0.69-0.78), sensitivity 74%, and specificity 73%. Wall motion imaging had similar accuracy (area under the curve, 0.70; confidence interval, 0.65-0.75) but lower sensitivity (49%, P<0.001) and higher specificity (92%, P<0.001). The diagnostic accuracy of myocardial perfusion imaging and wall motion imaging were lower than that of coronary computed tomographic angiography (P<0.001). CONCLUSIONS In a multicenter European population of patients with stable chest pain and low prevalence of CAD, coronary computed tomographic angiography is more accurate than noninvasive functional testing for detecting significant CAD defined invasively. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT00979199.