43 resultados para Peripheral nerve sensitization
Resumo:
OBJECTIVE: Motor evoked potentials (MEPs) after transcranial magnetic brain stimulation (TMS) are smaller than CMAPs after peripheral nerve stimulation, because desynchronization of the TMS-induced motor neurone discharges occurs (i.e. MEP desynchronization). This desynchronization effect can be eliminated by use of the triple stimulation technique (TST; Brain 121 (1998) 437). The objective of this paper is to study the effect of discharge desynchronization on MEPs by comparing the size of MEP and TST responses. METHODS: MEP and TST responses were obtained in 10 healthy subjects during isometric contractions of the abductor digiti minimi, during voluntary background contractions between 0% and 20% of maximal force, and using 3 different stimulus intensities. Additional data from other normals and from multiple sclerosis (MS) patients were obtained from previous studies. RESULTS: MEPs were smaller than TST responses in all subjects and under all stimulating conditions, confirming the marked influence of desynchronization on MEPs. There was a linear relation between the amplitudes of MEPs vs. TST responses, independent of the degree of voluntary contraction and stimulus intensity. The slope of the regression equation was 0.66 on average, indicating that desynchronization reduced the MEP amplitude on average by one third, with marked inter-individual variations. A similar average proportion was found in MS patients. CONCLUSIONS: The MEP size reduction induced by desynchronization is not influenced by the intensity of TMS and by the level of facilitatory voluntary background contractions. It is similar in healthy subjects and in MS patients, in whom increased desynchronization of central conduction was previously suggested to occur. Thus, the MEP size reduction observed may not parallel the actual amount of desynchronization.
Resumo:
The objective of this study was to analyze central motor output changes in relation to contraction force during motor fatigue. The triple stimulation technique (TST, Magistris et al. in Brain 121(Pt 3):437-450, 1998) was used to quantify a central conduction index (CCI = amplitude ratio of central conduction response and peripheral nerve response, obtained simultaneously by the TST). The CCI removes effects of peripheral fatigue from the quantification. It allows a quantification of the percentage of the entire target muscle motor unit pool driven to discharge by a transcranial magnetic stimulus. Subjects (n = 23) performed repetitive maximal voluntary contractions (MVC) of abductor digiti minimi (duration 1 s, frequency 0.5 Hz) during 2 min. TST recordings were obtained every 15 s, using stimulation intensities sufficient to stimulate all cortical motor neurons (MNs) leading to the target muscle, and during voluntary contractions of 20% of the MVC to facilitate the responses. TST was also repetitively recorded during recovery. This basic exercise protocol was modified in a number of experiments to further characterize influences on CCI of motor fatigue (4 min exercise at 50% MVC; delayed fatigue recovery during local hemostasis, "stimulated exercise" by 20 Hz trains of 1 s duration at 0.5 Hz during 2 min). In addition, the cortical silent period was measured during the basic exercise protocol. Force fatigued to approximately 40% of MVC in all experiments and in all subjects. In all subjects, CCI decreased during exercise, but this decrease varied markedly between subjects. On average, CCI reductions preceded force reductions during exercise, and CCI recovery preceded force recovery. Exercising at 50% for 4 min reduced muscle force more markedly than CCI. Hemostasis induced by a cuff delayed muscle force recovery, but not CCI recovery. Stimulated exercise reduced force markedly, but CCI decreased only marginally. Summarized, force reduction and reduction of the CCI related poorly quantitatively and in time, and voluntary drive was particularly critical to reduce the CCI. The fatigue induced reduction of CCI may result from a central inhibitory phenomenon. Voluntary muscle activation is critical for the CCI reduction, suggesting a primarily supraspinal mechanism.
Resumo:
BACKGROUND: Recent dramatic changes in surgical training resulting from working-hour regulations may lead to lack of competence. Traditionally, carotid surgery has been the domain of specialists. This study was designed to compare the outcome of carotid endarterectomy performed by vascular surgical trainees versus vascular surgeon (VS). METHODS: A retrospective study of 1,379 consecutive patients who underwent carotid endarterectomy as the sole procedure under local or general anesthesia (from 1995-2004) was performed. All patients were admitted to the intensive care unit for 24 hours. Trainees performed 475 (34.5%) and vascular specialists performed 904 (65.5%) operations. RESULTS: Patient characteristics with regard to preoperative neurological status were similar. Trainees operated on 61.4% symptomatic patients and VS on 56.8% (P = 0.09). Shunt use did not differ (16% trainee vs. 17.8% VS). Clamping time and total operating time were longer among trainees (41.9 vs. 33.5 min, P < 0.001; and 121.2 vs. 101.8 min, P < 0.001, respectively). Postoperative stroke and death rates (3.2% vs. 3.1% and 0.4% vs. 0.9%, respectively) did not differ. Peripheral nerve complications were more common among trainees (12.2% vs. 6.5%; P < 0.0001); 99.6% of these nerve injuries had resolved at 3 months' follow-up. CONCLUSIONS: Carotid endarterectomy can be performed safely by a trainee vascular surgeon when assisted and supervised by a specialist vascular surgeon.
Resumo:
The sheep is a popular animal model for human biomechanical research involving invasive surgery on the hind limb. These painful procedures can only be ethically justified with the application of adequate analgesia protocols. Regional anaesthesia as an adjunct to general anaesthesia may markedly improve well-being of these experimental animals during the postoperative period due to a higher analgesic efficacy when compared with systemic drugs, and may therefore reduce stress and consequently the severity of such studies. As a first step 14 sheep cadavers were used to establish a new technique for the peripheral blockade of the sciatic and the femoral nerves under sonographic guidance and to evaluate the success rate by determination of the colorization of both nerves after an injection of 0.5 mL of a 0.1% methylene blue solution. First, both nerves were visualized sonographically. Then, methylene blue solution was injected and subsequently the length of colorization was measured by gross anatomical dissection of the target nerves. Twenty-four sciatic nerves were identified sonographically in 12 out of 13 cadavers. In one animal, the nerve could not be ascertained unequivocally and, consequently, nerve colorization failed. Twenty femoral nerves were located by ultrasound in 10 out of 13 cadavers. In three cadavers, signs of autolysis impeded the scan. This study provides a detailed anatomical description of the localization of the sciatic and the femoral nerves and presents an effective and safe yet simple and rapid technique for performing peripheral nerve blocks with a high success rate.
Resumo:
Introduction: Desmoplastic small round cell tumor (DSRCT) is an uncommon, embryonic-type neoplasm, typically presenting as an abdominal mass in young men. A single case of DSRCT arising in the peripheral nervous system has been reported. Methods: The clinical course, imaging, electrophysiological, intraoperative, histopathological, molecular findings, and postoperative follow-up are reported. Results: A 43-year-old man presented with slowly progressive right brachial plexopathy. Magnetic resonance imaging revealed an enlarged medial cord with heterogeneous contrast enhancement. Histology showed a "small round cell" neoplasm with a polyphenotypic immunoprofile, including epithelial and mesenchymal markers. A pathognomonic fusion of Ewing sarcoma breakpoint region 1 and Wilms tumor 1 genes (EWSR1/WT1) was present. Treatment involved gross total excision and local radiotherapy. Conclusion: Our findings confirm the occurrence of DSRCT as a primary peripheral nerve tumor. Despite its usually very aggressive clinical course, prolonged recurrence-free survival may be reached. Histomorphology and immunoprofile of DSRCT may lead to misdiagnosis as small cell carcinoma. © 2013 Wiley Periodicals, Inc.
Resumo:
Despite the numerous available possibilities for the surgical treatment of peripheral nerve lesions found in the dog, the success of these treatments is often unsatisfactory. It has been proven that Schwann cells (SC) have a positive influence on the regeneration of nerve stumps. Implanting a guidance channel seeded with autologous SC at the lesion site could be a new therapeutic approach. The aim of this research was to investigate the in vitro cultivation and expansion of canine SC as the main requirement for the treatment referred to above. Biopsies were carried out on 17 nerve samples originating from dogs of different breed, age, gender and condition. The reexplantation method was employed, followed by dissociation using hyaluronidase, collagenase and trypsin and further expansion. The samples were divided into six groups which were treated with a varying combination of mitogens (forskolin, bovine PEX, choleratoxin, heregulin). To obtain the quantities of SC, the specimens were immunostained by a p75-antibody. By employing a growing number of agents it was possible to obtain an increase in both the quantity of cells and purity of cultures. A maximum of 16x10(5) cells per millilitre of suspension was achieved. The largest SC purity measured 27.1%. The maximum SC quantity achieved was 43.3x10(4) SC per millilitre.
Resumo:
Five dogs with peripheral nerve injuries (3 radial nerve and 2 peroneal nerve paralysis) were presented at the Small Animal Clinic of the Freie University in Berlin, Germany and were treated with a new surgical technique. The patients were examinated clinically, neurologically and an electromyographic examination was performed. The surgical technique consisted in a direct transposition of a sound nerve in a paralysed muscle. After 12 weeks, 4 dogs were able to use their leg in a correct fashion. One dog showed an improvement of the clinical signs but remained unable to bear weight on his leg.
Resumo:
Signs of nervous system dysfunction such as headache or convulsions often occur in severe systemic hypertension. Less recognized is the association between severe hypertension and peripheral facial nerve palsy. The aim of this study was to systematically review the literature on the association of peripheral facial palsy with severe hypertension.
Resumo:
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Resumo:
Peripheral and neuraxial nerve blockades are widely used in the perioperative period. Their values to diminish acute postoperative pain are established but other important outcomes such as chronic postoperative pain, or newly, cancer recurrence, or infections could also be influenced. The long-term effects of perioperative nerve blockade are still controversial. We will review current knowledge of the effects of blocking peripheral electrical activity in different animal models of pain. We will first go over the mechanisms of pain development and evaluate which types of fibers are activated after an injury. In the light of experimental results, we will propose some hypotheses explaining the mitigated results obtained in clinical studies on chronic postoperative pain. Finally, we will discuss three major disadvantages of the current blockade: the absence of blockade of myelinated fibers, the inappropriate duration of blockade, and the existence of activity-independent mechanisms.
Resumo:
Several lines of evidence support an important role for somatostatin receptors (SSTRs) in pain modulation. The therapeutic use of established SSTR peptide agonists for this indication is limited by their broad range of effects, need for intrathecal delivery, and short half-life. Therefore, the goal of the present study was to investigate the analgesic effect of SCR007, a new, highly selective SSTR2 non-peptide agonist. Behavioral studies demonstrated that paw withdrawal latencies to heat were significantly increased following intraplantar SCR007. Furthermore, both intraperitoneal and intraplantar injection of SCR007 significantly reduced formalin- and capsaicin-induced flinching and lifting/licking nociceptive behaviors. Recordings from nociceptors using an in vitro glabrous skin-nerve preparation showed that SCR007 reduced heat responses in a dose-dependent fashion, bradykinin-induced excitation, heat sensitization and capsaicin-induced excitation. In both the behavioral and single fiber studies, the SCR007 effects were reversed by the SSTR antagonist cyclo-somatostatin, demonstrating receptor specificity. In the single fiber studies, the opioid antagonist naloxone did not reverse SCR007-induced anti-nociception suggesting that SCR007 did not exert its effects through activation of opioid receptors. Analysis of cAMP/protein kinase A (PKA) involvement demonstrated that SCR007 prevented forskolin- and Sp-8-Br-cAMPS (a PKA activator)-induced heat sensitization, supporting the hypothesis that SCR007-induced inhibition could involve a down-regulation of the cAMP/PKA pathway. These data provide several lines of evidence that the non-peptide imidazolidinedione SSTR2 agonist SCR007 is a promising anti-nociceptive and analgesic agent for the treatment of pain of peripheral and/or central origin.
Resumo:
Neuroinflammation has long been studied for its connection to the development and progression of Multiple Sclerosis. In recent years, the field has expanded to look at the role of inflammatory processes in a wide range of neurological conditions and cognitive disorders including stroke, amyotrophic lateral sclerosis, and autism. Researchers have also started to note the beneficial impacts of neuroinflammation in certain diseases. Neuroinflammation: New Insights into Beneficial and Detrimental Functions provides a comprehensive view of both the detriments and benefits of neuroinflammation in human health. Neuroinflammation: New Insights into Beneficial and Detrimental Functions opens with two chapters that look at some fundamental aspects of neuroinflammation in humans and rodents. The remainder of the book is divided into two sections which examine both the detrimental and beneficial aspects of inflammation on the brain, spinal cord and peripheral nerves, on various disease states, and in normal aging. These sections provide a broad picture of the role neuroinflammation plays in the physiology and pathology of various neurological disorders. Providing cross-disciplinary coverage, Neuroinflammation: New Insights into Beneficial and Detrimental Functions will be an essential volume for neuroimmunologists, neurobiologists, neurologists, and others interested in the field.