35 resultados para Paternal uncertainty


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper addresses the question of which factors drive the formation of policy preferences when there are remaining uncertainties about the causes and effects of the problem at stake. To answer this question we examine policy preferences reducing aquatic micropollutants, a specific case of water protection policy and different actor groups (e.g. state, science, target groups). Here, we contrast two types of policy preferences: a) preventive or source-directed policies, which mitigate pollution in order to avoid contact with water; and b) reactive or end-of-pipe policies, which filter water already contaminated by pollutants. In a second step, we analyze the drivers for actors’ policy preferences by focusing on three sets of explanations, i.e. participation, affectedness and international collaborations. The analysis of our survey data, qualitative interviews and regression analysis of the Swiss political elite show that participation in the policy-making process leads to knowledge exchange and reduces uncertainties about the policy problem, which promotes preferences for preventive policies. Likewise, actors who are affected by the consequences of micropollutants, such as consumer or environmental associations, opt for anticipatory policies. Interestingly, we find that uncertainties about the effectiveness of preventive policies can promote preferences for end-of-pipe policies. While preventive measures often rely on (uncertain) behavioral changes of target groups, reactive policies are more reliable when it comes to fulfilling defined policy goals. Finally, we find that in a transboundary water management context, actors with international collaborations prefer policies that produce immediate and reliable outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy shocks like the Fukushima accident can have important political consequences. This article examines their impact on collaboration patterns between collective actors in policy processes. It argues that external shocks create both behavioral uncertainty, meaning that actors do not know about other actors' preferences, and policy uncertainty on the choice and consequences of policy instruments. The context of uncertainty interacts with classical drivers of actor collaboration in policy processes. The analysis is based on a dataset comprising interview and survey data on political actors in two subsequent policy processes in Switzerland and Exponential Random Graph Models for network data. Results first show that under uncertainty, collaboration of actors in policy processes is less based on similar preferences than in stable contexts, but trust and knowledge of other actors are more important. Second, under uncertainty, scientific actors are not preferred collaboration partners.