39 resultados para Pancreatitis -- metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim was to investigate the effect of combined butafosfan and cyanocobalamin on liver metabolism in early lactating cows through mRNA expression measurements of genes encoding 31 enzymes and transport proteins of major metabolic processes in the liver using 16 multiparous early lactating dairy cows. The treatments included i.v. injection of 10 mL/100 kg of body weight combined butafosfan and cyanocobalamin (TG, n = 8) on 3 d consecutively at 25 +/- 3 d in milk or injection with physiological saline solution similarly applied (CG, n = 8). Results include a higher daily milk production for TG cows (41.1 +/- 0.9 kg, mean +/- SEM) compared with CG cows (39.5 +/- 0.7 kg). In plasma, the concentration of inorganic phosphorus was lower in the TG cows (1.25 +/- 0.08 mmol/L) after the treatment than in the CG cows (1.33 +/- 0.07 mmol/L). The plasma beta-hydroxybutyrate concentration was 0.65 +/- 0.13 mmol/L for all cows before the treatment, and remained unaffected post treatment. The unique result was that in the liver, the mRNA abundance of acyl-coenzyme A synthetase long-chain family member 1, involved in fatty acid oxidation and biosynthesis, was lower across time points after the treatment for TG compared with CG cows (17.5 +/- 0.15 versus 18.1 +/- 0.24 cycle threshold, log(2), respectively). In conclusion, certain effects of combined butafosfan and cyanocobalamin were observed on mRNA abundance of a gene in the liver of nonketotic early lactating cows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoglycemia is a characteristic condition of early lactation dairy cows and is subsequently dependent on, and may affect, metabolism in the liver. The objective of the present study was to investigate the effects of induced hypoglycemia, maintained for 48 h, on metabolic parameters in plasma and liver of mid-lactation dairy cows. The experiment involved 3 treatments, including a hyperinsulinemic hypoglycemic clamp (HypoG, n=6) to obtain a glucose concentration of 2.5 mmol/L, a hyperinsulinemic euglycemic clamp (EuG, n=6) in which the effect of insulin was studied, and a control treatment with a 0.9% saline solution (NaCl, n=6). Blood samples for measurements of insulin, metabolites, and enzymes were taken at least once per hour. Milk yield was recorded and milk samples were collected before and after treatment. Liver biopsies were obtained before and after treatment to measure mRNA abundance by real-time, quantitative reverse transcription-PCR of 12 candidate genes involved in the main metabolic pathways. Milk yield decreased in HypoG and NaCl cows, whereas it remained unaffected in EuG cows. Energy-corrected milk yield (kg/d) was only decreased in HypoG cows. In plasma, concentration of beta-hydroxybutyrate decreased in response to treatment in EuG cows and was lower (0.41+/-0.04 mmol/L) on d 2 of the treatment compared with that in HypoG and NaCl cows (on average 0.61+/-0.03 mmol/L, respectively). Nonesterified fatty acids remained unaffected in all treatments. In the liver, differences between treatments for their effects were only observed in case of mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and glucose-6-phosphatase (G6PC). In HypoG, mRNA abundance of PEPCKm was upregulated, whereas in EuG and NaCl cows, it was downregulated. The EuG treatment downregulated mRNA expression of G6PC, a marked effect compared with the unchanged transcript expression in NaCl. The mRNA abundance of the insulin receptor remained unaffected in all treatments, and no significant treatment differences were observed for genes related to lipid metabolism. In conclusion, low glucose concentrations in dairy cows affect liver metabolism at a molecular level through upregulation of PEPCKm mRNA abundance. Metabolic regulatory events in the liver are directed, apart from hormones, by the level of metabolites, either in excess (e.g., free fatty acids) or in shortage (e.g., glucose).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the pathogenic mechanisms of autoimmune pancreatitis (AIP), an increasingly recognized, immune-mediated form of chronic pancreatitis. Current treatment options are limited and disease relapse is frequent. We investigated factors that contribute to the development of AIP and new therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two F(2) Charolais x German Holstein families comprising full and half sibs share identical but reciprocal paternal and maternal Charolais grandfathers differ in milk production. We hypothesized that differences in milk production were related to differences in nutritional partitioning revealed by glucose metabolism and carcass composition. In 18F(2) cows originating from mating Charolais bulls to German Holstein cows and a following intercross of the F(1) individuals (n=9 each for family Ab and Ba; capital letters indicate the paternal and lowercase letter the maternal grandsire), glucose tolerance tests were performed at 10 d before calving and 30 and 93 d in milk (DIM) during second lactation. Glucose half-time as well as areas under the concentration curve for plasma glucose and insulin were calculated. At 94 DIM cows were infused intravenously with 18.3 micromol of d-[U-(13)C(6)]glucose/kg(0.75) of BW, and blood samples were taken to measure rate of glucose appearance and glucose oxidation as well as plasma concentrations of metabolites and hormones. Cows were slaughtered at 100 DIM and carcass size and composition was evaluated. Liver samples were taken to measure glycogen and fat content, gene expression levels, and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase as well as gene expression of glucose transporter 2. Milk yield was higher and milk protein content at 30 DIM was lower in Ba than in Ab cows. Glucose half-life was higher but insulin secretion after glucose challenge was lower in Ba than in Ab cows. Cows of Ab showed higher glucose oxidation, and plasma concentrations at 94 DIM were lower for glucose and insulin, whereas beta-hydroxybutyrate was higher in Ba cows. Hepatic gene expression of pyruvate carboxylase, glucose 6-phosphatase, and glucose transporter 2 were higher whereas phosphoenolpyruvate carboxykinase activities were lower in Ba than in Ab cows. Carcass weight as well as fat content of the carcass were higher in Ab than in Ba cows, whereas mammary gland mass was lower in Ab than in Ba cows. Fat classification indicated leaner carcass composition in Ba than in Ab cows. In conclusion, the 2 families showed remarkable differences in milk production that were accompanied by changes in glucose metabolism and body composition, indicating capacity for milk production as main metabolic driving force. Sex chromosomal effects provide an important regulatory mechanism for milk performance and nutrient partitioning that requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background To perform a comprehensive study on the relationship between vitamin D metabolism and the response to interferon-α-based therapy of chronic hepatitis C. Methodology/Principal Findings Associations between a functionally relevant polymorphism in the gene encoding the vitamin D 1α-hydroxylase (CYP27B1-1260 rs10877012) and the response to treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin were determined in 701 patients with chronic hepatitis C. In addition, associations between serum concentrations of 25-hydroxyvitamin D3 (25[OH]D3) and treatment outcome were analysed. CYP27B1-1260 rs10877012 was found to be an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes (15% difference in SVR for rs10877012 genotype AA vs. CC, p = 0.02, OR = 1.52, 95% CI = 1.061–2.188), but not in patients with favourable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D insufficiency (25[OH]D3<20 ng/mL) during all seasons, but 25(OH)D3 serum levels were not associated with treatment outcome. Conclusions/Significance Our study suggests a role of bioactive vitamin D (1,25[OH]2D3, calcitriol) in the response to treatment of chronic hepatitis C. However, serum concentration of the calcitriol precursor 25(OH)D3 is not a suitable predictor of treatment outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chronic pancreatitis (CP) is an inflammatory disease that in some patients leads to exocrine and endocrine dysfunction. In industrialized countries the most common aetiology is chronic alcohol abuse. Descriptions of associated genetic alterations in alcoholic CP are rare. However, a common PNPLA3 variant (p.I148M) is associated with the development of alcoholic liver cirrhosis (ALC). Since, alcoholic CP and ALC share the same aetiology PNPLA3 variant (p.I148M) possibly influences the development of alcoholic CP. Methods Using melting curve analysis we genotyped the variant in 1510 patients with pancreatitis or liver disease (961 German and Dutch alcoholic CP patients, 414 German patients with idiopathic or hereditary CP, and 135 patients with ALC). In addition, we included in total 2781 healthy controls in the study. Results The previously published overrepresentation of GG-genotype was replicated in our cohort of ALC (p-value <0.0001, OR 2.3, 95% CI 1.6–3.3). Distributions of genotype and allele frequencies of the p.I148M variant were comparable in patients with alcoholic CP, idiopathic and hereditary CP and in healthy controls. Conclusions The absence of an association of PNPLA3 p.I148M with alcoholic CP seems not to point to a common pathway in the development of alcoholic CP and alcoholic liver cirrhosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB(1)) is present at the membranes of mouse neuronal mitochondria (mtCB(1)), where it directly controls cellular respiration and energy production. Through activation of mtCB(1) receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB(1) receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppression of inhibition in the hippocampus. Thus, mtCB(1) receptors directly modulate neuronal energy metabolism, revealing a new mechanism of action of G protein-coupled receptor signaling in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolomics as one of the most rapidly growing technologies in the "-omics" field denotes the comprehensive analysis of low molecular-weight compounds and their pathways. Cancer-specific alterations of the metabolome can be detected by high-throughput mass-spectrometric metabolite profiling and serve as a considerable source of new markers for the early differentiation of malignant diseases as well as their distinction from benign states. However, a comprehensive framework for the statistical evaluation of marker panels in a multi-class setting has not yet been established. We collected serum samples of 40 pancreatic carcinoma patients, 40 controls, and 23 pancreatitis patients according to standard protocols and generated amino acid profiles by routine mass-spectrometry. In an intrinsic three-class bioinformatic approach we compared these profiles, evaluated their selectivity and computed multi-marker panels combined with the conventional tumor marker CA 19-9. Additionally, we tested for non-inferiority and superiority to determine the diagnostic surplus value of our multi-metabolite marker panels. Compared to CA 19-9 alone, the combined amino acid-based metabolite panel had a superior selectivity for the discrimination of healthy controls, pancreatitis, and pancreatic carcinoma patients [Formula: see text] We combined highly standardized samples, a three-class study design, a high-throughput mass-spectrometric technique, and a comprehensive bioinformatic framework to identify metabolite panels selective for all three groups in a single approach. Our results suggest that metabolomic profiling necessitates appropriate evaluation strategies and-despite all its current limitations-can deliver marker panels with high selectivity even in multi-class settings.