40 resultados para PRION-PROTEIN GENE
Resumo:
Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.
Resumo:
OBJECTIVE: A severely virilized 46, XX newborn girl was referred to our center for evaluation and treatment of congenital adrenal hyperplasia (CAH) because of highly elevated 17alpha-hydroxyprogesterone levels at newborn screening; biochemical tests confirmed the diagnosis of salt-wasting CAH. Genetic analysis revealed that the girl was compound heterozygote for a previously reported Q318X mutation in exon 8 and a novel insertion of an adenine between nucleotides 962 and 963 in exon 4 of the CYP21A2 gene. This 962_963insA mutation created a frameshift leading to a stop codon at amino acid 161 of the P450c21 protein. AIM AND METHODS: To better understand structure-function relationships of mutant P450c21 proteins, we performed multiple sequence alignments of P450c21 with three mammalian P450s (P450 2C8, 2C9 and 2B4) with known structures as well as with human P450c17. Comparative molecular modeling of human P450c21 was then performed by MODELLER using the X-ray crystal structure of rabbit P450 2B4 as a template. RESULTS: The new three dimensional model of human P450c21 and the sequence alignment were found to be helpful in predicting the role of various amino acids in P450c21, especially those involved in heme binding and interaction with P450 oxidoreductase, the obligate electron donor. CONCLUSION: Our model will help in analyzing the genotype-phenotype relationship of P450c21 mutations which have not been tested for their functional activity in an in vitro assay.
Resumo:
In adult skeletal muscle, abluminal sprouting or longitudinal splitting of capillaries can be initiated separately by muscle overload and elevated microcirculation shear stress respectively. In the present study, gene and protein expression patterns associated with the different forms of angiogenesis were examined using a targeted gene array (Superarray), validated by quantitative RT (reverse transcription)-PCR and immunoblots. Sprouting angiogenesis induced large changes in expression levels in genes associated with extracellular matrix remodelling, such as MMP-2 (matrix metalloproteinase-2), TIMP (tissue inhibitor of metalloproteinases), SPARC (secreted protein, acidic and rich in cysteine) and thrombospondin. Changes in neuropilin, midkine and restin levels, which may underpin changes in endothelial morphology, were seen during splitting angiogenesis. Up-regulation of VEGF (vascular endothelial growth factor), Flk-1, angiopoietin-2 and PECAM-1 (platelet/endothelial cell adhesion molecule-1) was seen in both forms of angiogenesis, representing a common angiogenic response of endothelial cells. In conclusion, the present study demonstrates that general angiogenic signals from growth factors can be influenced by the local microenvironment resulting in differing forms of capillary growth to produce a co-ordinated expansion of the vascular bed.
Resumo:
BACKGROUND: Anaplasma phagocytophilum (formerly known as the human granulocytic ehrlichia, Ehrlichia equi and Ehrlichia phagocytophila) is an obligate intracellular organism causing clinical disease in humans and various species of domestic animals. OBJECTIVES: The objectives of this investigation were to sequence and clone the major surface protein 5 (MSP5) of A phagocytophilum and to evaluate the suitability of this antigen in the serologic diagnosis of anaplasmosis in humans and dogs. METHODS: The msp5 gene of A phagocytophilum was sequenced, cloned, and expressed in Escherichia coli. The predicted amino acid sequence homology of the various MSP5/major antigenic protein 2 orthologs was compared among various Anaplasma and Ehrlichia species. Recombinant MSP5 of A phagocytophilum was used in an ELISA to detect antibodies in serum samples from humans and dogs infected with the organism. RESULTS: Serum samples from 104 individuals previously diagnosed with A phagocytophilum infection, as well as samples from clinically healthy humans, were tested. In addition, multiple samples from 4 dogs experimentally infected with 2 different geographic isolates of A phagocytophilum and 5 dogs naturally infected with a Swiss isolate were tested using ELISA. Using this group of immunofluorescent antibody test-positive and immunofluorescent antibody test-negative samples, we found the overall agreement between assays to be >90%. CONCLUSIONS: These results indicate that recombinant MSP5 has potential for use as a diagnostic test antigen to detect infection with A phagocytophilum in both dogs and humans. However, sequence similarities among orthologs of MSP5 in related species of anaplasma and ehrlichia suggest that cross-reactivity among these pathogens is likely if the entire peptide is used as a test antigen.
Resumo:
BACKGROUND: Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. RESULTS: We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. CONCLUSION: We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.
Resumo:
Inflammation of the subarachnoid and ventricular space contributes to the development of brain damage i.e. cortical necrosis and hippocampal apoptosis in pneumococcal meningitis (PM). Galectin-3 and -9 are known pro-inflammatory mediators and regulators of apoptosis. Here, the gene and protein expression profile for both galectins was assessed in the disease progression of PM. The mRNA of Lgals3 and Lgals9 increased continuously in the cortex and in the hippocampus from 22 h to 44 h after infection. At 44 h after infection, mRNA levels of Lgals9 in the hippocampus were 7-fold and those of Lgals3 were 30-fold higher than in uninfected controls (P<0.01). Galectin-9 protein did not change, but galectin-3 significantly increased in cortex and hippocampus with the duration of PM. Galectin-3 was localized to polymorphonuclear neutrophils, microglia, monocytes and macrophages, suggesting an involvement of galectin-3 in the neuroinflammatory processes leading to brain damage in PM.
Resumo:
The hairpin structure at the 3' end of animal histone mRNAs controls histone RNA 3' processing, nucleocytoplasmic transport, translation and stability of histone mRNA. Functionally overlapping, if not identical, proteins binding to the histone RNA hairpin have been identified in nuclear and polysomal extracts. Our own results indicated that these hairpin binding proteins (HBPs) bind their target RNA as monomers and that the resulting ribonucleoprotein complexes are extremely stable. These features prompted us to select for HBP-encoding human cDNAs by RNA-mediated three-hybrid selection in Saccharomyces cerevesiae. Whole cell extract from one selected clone contained a Gal4 fusion protein that interacted with histone hairpin RNA in a sequence- and structure-specific manner similar to a fraction enriched for bovine HBP, indicating that the cDNA encoded HBP. DNA sequence analysis revealed that the coding sequence did not contain any known RNA binding motifs. The HBP gene is composed of eight exons covering 19.5 kb on the short arm of chromosome 4. Translation of the HBP open reading frame in vitro produced a 43 kDa protein with RNA binding specificity identical to murine or bovine HBP. In addition, recombinant HBP expressed in S. cerevisiae was functional in histone pre-mRNA processing, confirming that we have indeed identified the human HBP gene.
Resumo:
Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron–sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.