55 resultados para PREFRONTAL GRAY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lesions of the ventromedial prefrontal cortex can result in a deficient decision-making behavior. So far, most experimental results in the neuropsychological decision-making research have been obtained with gambling tasks. Due to their high complexity, it is difficult to evaluate the underlying processes of the decision-making deficits. The aim of this study was to assess if patients with ventromedial prefrontal damage compared to patients with dorsolateral prefrontal damage and controls show a deficit in an early stage of the decision-making process. Nine patients with ventromedial prefrontal damage, three with dorsolateral prefrontal damage, and eleven healthy controls were tested with a newly developed decision task in which they had to search actively for the information they needed for their decisions. Our results show that patients with ventromedial prefrontal damage compared to the brain-lesioned dorsolateral prefrontal control group and healthy controls searched less for information with regard to risk defusing operators or consequences of their decisions indicating impairment already in the early stage of the decision-making process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans are noted for their capacity to over-ride self-interest in favor of normatively valued goals. We examined the neural circuitry that is causally involved in normative, fairness-related decisions by generating a temporarily diminished capacity for costly normative behavior, a 'deviant' case, through non-invasive brain stimulation (repetitive transcranial magnetic stimulation) and compared normal subjects' functional magnetic resonance imaging signals with those of the deviant subjects. When fairness and economic self-interest were in conflict, normal subjects (who make costly normative decisions at a much higher frequency) displayed significantly higher activity in, and connectivity between, the right dorsolateral prefrontal cortex (DLPFC) and the posterior ventromedial prefrontal cortex (pVMPFC). In contrast, when there was no conflict between fairness and economic self-interest, both types of subjects displayed identical neural patterns and behaved identically. These findings suggest that a parsimonious prefrontal network, the activation of right DLPFC and pVMPFC, and the connectivity between them, facilitates subjects' willingness to incur the cost of normative decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual reality (VR) is a powerful tool for simulating aspects of the real world. The success of VR is thought to depend on its ability to evoke a sense of "being there", that is, the feeling of "Presence". In view of the rapid progress in the development of increasingly more sophisticated virtual environments (VE), the importance of understanding the neural underpinnings of presence is growing. To date however, the neural correlates of this phenomenon have received very scant attention. An fMRI-based study with 52 adults and 25 children was therefore conducted using a highly immersive VE. The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures. Whereas the right DLPFC controlled the sense of presence by down-regulating the activation in the egocentric dorsal visual processing stream, the left DLPFC up-regulated widespread areas of the medial prefrontal cortex known to be involved in self-reflective and stimulus-independent thoughts. In contrast, there was no evidence of these two strategies in children. In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children. Taken together, this study presents the first findings that show activation of a highly specific neural network orchestrating the experience of presence in adult subjects, and that the absence of activity in this neural network might contribute to the generally increased susceptibility of children for the experience of presence in VEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although posttraumatic stress disorder (PTSD) is associated with a variety of structural and functional brain changes, the molecular pathophysiological mechanisms underlying these macroscopic alterations are unknown. Recent studies support the existence of an altered excitation-inhibition balance in PTSD. Further, there is preliminary evidence from blood-sample studies suggesting heightened oxidative stress in PTSD, potentially leading to neural damage through excessive brain levels of free radicals. In this study we investigated PTSD (n=12) and non-PTSD participants (n=17) using single-voxel proton magnetic resonance spectroscopy (MRS) in dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). We found significantly higher levels of γ-amino butyric acid (GABA) (a primary inhibitory neurotransmitter) and glutathione (a marker for neuronal oxidative stress) in PTSD participants. Atypically high prefrontal inhibition as well as oxidative stress may be involved in the pathogenesis of PTSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human risk taking is characterized by a large amount of individual heterogeneity. In this study, we applied resting-state electroencephalography, which captures stable individual differences in neural activity, before subjects performed a risk-taking task. Using a source-localization technique, we found that the baseline cortical activity in the right prefrontal cortex predicts individual risk-taking behavior. Individuals with higher baseline cortical activity in this brain area display more risk aversion than do other individuals. This finding demonstrates that neural characteristics that are stable over time can predict a highly complex behavior such as risk-taking behavior and furthermore suggests that hypoactivity in the right prefrontal cortex might serve as a dispositional indicator of lower regulatory abilities, which is expressed in greater risk-taking behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decisions require careful weighing of the risks and benefits associated with a choice. Some people need to be offered large rewards to balance even minimal risks, whereas others take great risks in the hope for an only minimal benefit. We show here that risk-taking is a modifiable behavior that depends on right hemisphere prefrontal activity. We used low-frequency, repetitive transcranial magnetic stimulation to transiently disrupt left or right dorsolateral prefrontal cortex (DLPFC) function before applying a well known gambling paradigm that provides a measure of decision-making under risk. Individuals displayed significantly riskier decision-making after disruption of the right, but not the left, DLPFC. Our findings suggest that the right DLPFC plays a crucial role in the suppression of superficially seductive options. This confirms the asymmetric role of the prefrontal cortex in decision-making and reveals that this fundamental human capacity can be manipulated in normal subjects through cortical stimulation. The ability to modify risk-taking behavior may be translated into therapeutic interventions for disorders such as drug abuse or pathological gambling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disruption of function of left, but not right, lateral prefrontal cortex (LPFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) increased choices of immediate rewards over larger delayed rewards. rTMS did not change choices involving only delayed rewards or valuation judgments of immediate and delayed rewards, providing causal evidence for a neural lateral-prefrontal cortex-based self-control mechanism in intertemporal choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reputation formation pervades human social life. In fact, many people go to great lengths to acquire a good reputation, even though building a good reputation is costly in many cases. Little is known about the neural underpinnings of this important social mechanism, however. In the present study, we show that disruption of the right, but not the left, lateral prefrontal cortex (PFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) diminishes subjects' ability to build a favorable reputation. This effect occurs even though subjects' ability to behave altruistically in the absence of reputation incentives remains intact, and even though they are still able to recognize both the fairness standards necessary for acquiring and the future benefits of a good reputation. Thus, subjects with a disrupted right lateral PFC no longer seem to be able to resist the temptation to defect, even though they know that this has detrimental effects on their future reputation. This suggests an important dissociation between the knowledge about one's own best interests and the ability to act accordingly in social contexts. These results link findings on the neural underpinnings of self-control and temptation with the study of human social behavior, and they may help explain why reputation formation remains less prominent in most other species with less developed prefrontal cortices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-frequency "off-line" repetitive transcranial magnetic stimulation (rTMS) over the course of several minutes has attained considerable attention as a research tool in cognitive neuroscience due to its ability to induce functional disruptions of brain areas. This disruptive rTMS effect is highly valuable for revealing a causal relationship between brain and behavior. However, its influence on remote interconnected areas and, more importantly, the duration of the induced neurophysiological effects, remain unknown. These aspects are critical for a study design in the context of cognitive neuroscience. In order to investigate these issues, 12 healthy male subjects underwent 8 H(2)(15)O positron emission tomography (PET) scans after application of long-train low-frequency rTMS to the right dorsolateral prefrontal cortex (DLPFC). Immediately after the stimulation train, regional cerebral blood flow (rCBF) increases were present under the stimulation site as well as in other prefrontal cortical areas, including the ventrolateral prefrontal cortex (VLPFC) ipsilateral to the stimulation site. The mean increases in rCBF returned to baseline within 9 min. The duration of this unilateral prefrontal rTMS effect on rCBF is of particular interest to those who aim to influence behavior in cognitive paradigms that use an "off-line" approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have shown increased risk taking in healthy individuals after low-frequency repetitive transcranial magnetic stimulation, known to transiently suppress cortical excitability, over the right dorsolateral prefrontal cortex (DLPFC). It appears, therefore, plausible that differential modulation of DLPFC activity, increasing the right while decreasing the left, might lead to decreased risk taking, which could hold clinical relevance as excessively risky decision making is observed in clinical populations leading to deleterious consequences. The goal of the present study was to investigate whether risk-taking behaviors could be decreased using concurrent anodal transcranial direct current stimulation (tDCS) of the right DLPFC, which allows upregulation of brain activity, with cathodal tDCS of the left DLPCF, which downregulates activity. Thirty-six healthy volunteers performed the risk task while they received either anodal over the right with cathodal over the left DLPFC, anodal over the left with cathodal over the right DLPFC, or sham stimulation. We hypothesized that right anodal/left cathodal would decrease risk-taking behavior compared with left anodal/right cathodal or sham stimulation. As predicted, during right anodal/left cathodal stimulation over the DLPFC, participants chose more often the safe prospect compared with the other groups. Moreover, these participants appeared to be insensitive to the reward associated with the prospects. These findings support the notion that the interhemispheric balance of activity across the DLPFCs is critical in decision-making behaviors. Most importantly, the observed suppression of risky behaviors suggests that populations with boundless risk-taking behaviors leading to negative real-life consequences, such as individuals with addiction, might benefit from such neuromodulation-based approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imagine you are overweight and you spot your favorite pastry in the storefront of a bakery. How do you manage to resist this temptation? Or to give other examples, how do you manage to restrain yourself from overspending or succumbing to sexual temptations? The present article summarizes two recent studies stressing the fundamental importance of inhibition in the process of decision making. Based on the results of these studies, we dare to claim that the capacity to resist temptation depends on the activity level of the right prefrontal cortex (PFC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans restrain self-interest with moral and social values. They are the only species known to exhibit reciprocal fairness, which implies the punishment of other individuals' unfair behaviors, even if it hurts the punisher's economic self-interest. Reciprocal fairness has been demonstrated in the Ultimatum Game, where players often reject their bargaining partner's unfair offers. Despite progress in recent years, however, little is known about how the human brain limits the impact of selfish motives and implements fair behavior. Here we show that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers. Importantly, however, subjects still judge such offers as very unfair, which indicates that the right DLPFC plays a key role in the implementation of fairness-related behaviors.