33 resultados para PHOSPHOLIPASE C-GAMMA-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anticancer agent in multiple animal models. Our published work indicates that the anticancer effects of FTY720 do not depend on actions at S1P receptors but instead stem from FTY720s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins. This result was significant because S1P receptor activation is responsible for FTY720s dose-limiting toxicity, bradycardia, that prevents its use in cancer patients. Here, we describe diastereomeric and enantiomeric 3- and 4-C-aryl 2-hydroxymethyl pyrrolidines that are more active than the previously known analogues. Of importance is that these compounds fail to activate S1P1 or S1P3 receptors in vivo but retain inhibitory effects on nutrient transporter proteins and anticancer activity in solid tumor xenograft models. Our studies reaffirm that the anticancer activity of FTY720 does not depend upon S1P receptor activation and uphold the promise of using S1P receptor-inactive azacyclic FTY720 analogues in human cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Risk factors promoting rhinovirus (RV) infections are inadequately described in healthy populations, especially infants. OBJECTIVES To determine the frequency of symptomatic and asymptomatic RV infections and identify possible risk factors from host and environment among otherwise healthy infants. METHODS In a prospective birth cohort, respiratory health was assessed in 41 term-born infants by weekly telephone interviews during the first year of life, and weekly nasal swabs were collected to determine RV prevalence. In a multilevel logistic regression model, associations between prevalence and respiratory symptoms during RV infections and host/environmental factors were determined. RESULTS 27% of nasal swabs in 41 infants tested positive for RVs. Risk factors for RV prevalence were autumn months (OR=1.71, p=0.01, 95% CI 1.13-2.61), outdoor temperatures between 5-10 °C (OR=2.33, p=0.001, 95% CI 1.41-3.86), older siblings (OR=2.60, p=0.001, 95% CI 1.50-4.51) and childcare attendance (OR=1.53, p=0.07, 95% CI 0.96-2.44). 51% of RV-positive samples were asymptomatic. Respiratory symptoms during RV infections were less likely during the first three months of life (OR=0.34, p=0.003, 95% CI 0.17-0.69) and in infants with atopic mothers (OR=0.44, p=0.008, 95% CI 0.24-0.80). Increased tidal volume (OR=1.67, p=0.03, 95% CI 1.04-2.68) and outdoor temperatures between 2-5 °C (OR=2.79, p=0.02, 95% CI 1.17-6.61) were associated with more symptoms. CONCLUSIONS RVs are highly prevalent during the first year of life, and most infections are asymptomatic. Frequency of RV infections is associated with environmental factors, while respiratory symptoms during RV infections are linked to host determinants like infant age, maternal atopy, or premorbid lung function.