35 resultados para P2Y12 antagonist


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gastrin-releasing peptide receptor (GRPr) is an important molecular target for the visualization and therapy of tumors and can be targeted with radiolabeled bombesin derivatives. The present study aims to develop statine-based bombesin receptor antagonists suitable for labeling with 64Cu for imaging by positron emission tomography (PET). The potent GRPr antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 was conjugated to the sarcophagine (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane=Sar) derivative 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar) via PEG4 (LE1) and PEG2 (LE2) spacers and radiolabeled with 64Cu2+ with >95% yield and specific activities of about 100 MBq/nmol. Both Cu(II) conjugates have high affinity for GRPr (IC50: natCu-LE1, 1.4±0.1 nM; natCu-LE2, 3.8±0.6 nM). The antagonistic properties of both conjugates were confirmed by Ca2+-flux measurements. Biodistribution studies of Cu-64-LE1 exhibited specific targeting of the tumor (19.6±4.7% IA/g at 1 h p.i.) and GRPr-positive organs. Biodistribution and PET images at 4 and 24 h postinjection showed increasing tumor-to-background ratios with time. This was illustrated by the acquisition of PET images showing high tumor-to-normal tissue contrast. This study demonstrates the high affinity of the MeCOSar-PEGx-bombesin conjugates to GRPr. The stability of 64Cu complexes of MeCOSar, the long half-life of 64Cu, and the suitable biodistribution profile of the 64Cu-labeled peptides lead to PET images of high contrast suitable for potential translation into the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND This first-in-human proof-of-concept study aimed to check whether safety and preclinical results obtained by intratumoral administration of BQ788, an endothelin receptor B (EDNRB) antagonist, can be repeated in human melanoma patients. METHODS Three patients received a single intralesional BQ788 application of 3 mg. After 3-7 days, the lesions were measured and removed for analysis. The administered dose was increased to a cumulative dosage of 8 mg in patient 4 (4 × 2.0 mg, days 0-3; lesion removed on day 4) and to 10 mg in patient 5 (3 × 3.3 mg, days 0, 3, and 10; lesion removed after 14 days). Control lesions were simultaneously treated with phosphate-buffered saline (PBS). All samples were processed and analyzed without knowledge of the clinical findings. RESULTS No statistical evaluation was possible because of the number of patients (n = 5) and the variability in the mode of administration. No adverse events were observed, regardless of administered dose. All observations were in accordance with results obtained in preclinical studies. Accordingly, no difference in degree of tumor necrosis was detected between BQ788- and PBS-treated samples. In addition, both EDNRB and Ki67 showed decreased expression in patients 2 and 5 and, to a lesser extent, in patient 1. Similarly, decreased expression of EDNRB mRNA in patients 2 and 5 and of BCL2A1 and/or PARP3 in patients 2, 3, and 5 was found. Importantly, semiquantitatively scored immunohistochemistry for CD31 and CD3 revealed more blood vessels and lymphocytes, respectively, in BQ788-treated tumors of patients 2 and 4. Also, in all patients, we observed inverse correlation in expression levels between EDNRB and HIF1A. Finally, in patient 5 (the only patient treated for longer than 1 week), we observed inhibition in lesion growth, as shown by size measurement. CONCLUSION The intralesional applications of BQ788 were well tolerated and showed signs of directly and indirectly reducing the viability of melanoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs such as the benzodiazepines. Benzodiazepines act at the high-affinity binding site at the α+/γ- subunit interface. Previously, an additional low affinity binding site for diazepam located in the transmembrane (TM) domain has been described. The compound SJM-3 was recently identified in a prospective screening of ligands for the benzodiazepine binding site and investigated for its site of action. We determined the binding properties of SJM-3 at GABAA receptors recombinantly expressed in HEK-cells using radioactive ligand binding assays. Impact on function was assessed in Xenopus laevis oocytes with electrophysiological experiments using the two-electrode voltage clamp method. SJM-3 was shown to act as an antagonist at the α+/γ- site. At the same time it strongly potentiated GABA currents via the binding site for diazepam in the transmembrane domain. Mutation of a residue in M2 of the α subunit strongly reduced receptor modulation by SJM-3 and a homologous mutation in the β subunit abolished potentiation. SJM-3 acts as a more efficient modulator than diazepam at the site in the trans-membrane domain. In contrast to low concentrations of benzodiazepines, SJM-3 modulates both synaptic and extrasynaptic receptors. A detailed exploration of the membrane site may provide the basis for the design and identification of subtype-selective modulatory drugs.