123 resultados para Ovine Fetus
Resumo:
Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.
Resumo:
BACKGROUND Cam-type femoroacetabular impingement (FAI) resulting from an abnormal nonspherical femoral head shape leads to chondrolabral damage and is considered a cause of early osteoarthritis. A previously developed experimental ovine FAI model induces a cam-type impingement that results in localized chondrolabral damage, replicating the patterns found in the human hip. Biochemical MRI modalities such as T2 and T2* may allow for evaluation of the cartilage biochemistry long before cartilage loss occurs and, for that reason, may be a worthwhile avenue of inquiry. QUESTIONS/PURPOSES We asked: (1) Does the histological grading of degenerated cartilage correlate with T2 or T2* values in this ovine FAI model? (2) How accurately can zones of degenerated cartilage be predicted with T2 or T2* MRI in this model? METHODS A cam-type FAI was induced in eight Swiss alpine sheep by performing a closing wedge intertrochanteric varus osteotomy. After ambulation of 10 to 14 weeks, the sheep were euthanized and a 3-T MRI of the hip was performed. T2 and T2* values were measured at six locations on the acetabulum and compared with the histological damage pattern using the Mankin score. This is an established histological scoring system to quantify cartilage degeneration. Both T2 and T2* values are determined by cartilage water content and its collagen fiber network. Of those, the T2* mapping is a more modern sequence with technical advantages (eg, shorter acquisition time). Correlation of the Mankin score and the T2 and T2* values, respectively, was evaluated using the Spearman's rank correlation coefficient. We used a hierarchical cluster analysis to calculate the positive and negative predictive values of T2 and T2* to predict advanced cartilage degeneration (Mankin ≥ 3). RESULTS We found a negative correlation between the Mankin score and both the T2 (p < 0.001, r = -0.79) and T2* values (p < 0.001, r = -0.90). For the T2 MRI technique, we found a positive predictive value of 100% (95% confidence interval [CI], 79%-100%) and a negative predictive value of 84% (95% CI, 67%-95%). For the T2* technique, we found a positive predictive value of 100% (95% CI, 79%-100%) and a negative predictive value of 94% (95% CI, 79%-99%). CONCLUSIONS T2 and T2* MRI modalities can reliably detect early cartilage degeneration in the experimental ovine FAI model. CLINICAL RELEVANCE T2 and T2* MRI modalities have the potential to allow for monitoring the natural course of osteoarthrosis noninvasively and to evaluate the results of surgical treatments targeted to joint preservation.
Resumo:
Maternal thromboembolism and a spectrum of placenta-mediated complications including the pre-eclampsia syndromes, fetal growth restriction, fetal loss, and abruption manifest a shared etiopathogenesis and predisposing risk factors. Furthermore, these maternal and fetal complications are often linked to subsequent maternal health consequences that comprise the metabolic syndrome, namely, thromboembolism, chronic hypertension, and type II diabetes. Traditionally, several lines of evidence have linked vasoconstriction, excessive thrombosis and inflammation, and impaired trophoblast invasion at the uteroplacental interface as hallmark features of the placental complications. "Omic" technologies and biomarker development have been largely based upon advances in vascular biology, improved understanding of the molecular basis and biochemical pathways responsible for the clinically relevant diseases, and increasingly robust large cohort and/or registry based studies. Advances in understanding of innate and adaptive immunity appear to play an important role in several pregnancy complications. Strategies aimed at improving prediction of these pregnancy complications are often incorporating hemodynamic blood flow data using non-invasive imaging technologies of the utero-placental and maternal circulations early in pregnancy. Some evidence suggests that a multiple marker approach will yield the best performing prediction tools, which may then in turn offer the possibility of early intervention to prevent or ameliorate these pregnancy complications. Prediction of maternal cardiovascular and non-cardiovascular consequences following pregnancy represents an important area of future research, which may have significant public health consequences not only for cardiovascular disease, but also for a variety of other disorders, such as autoimmune and neurodegenerative diseases.
Resumo:
Neospora caninum is considered one of the main causes of abortion in cattle, yet recent studies have also emphasised its relevance as an abortifacient in small ruminants. In order to gain deeper insight into the pathogenesis of ovine neosporosis, pregnant ewes were intravenously inoculated with 10(6) tachyzoites of the Nc-Spain7 isolate at days 40, 90 or 120 of gestation. Infection during the first term resulted in the death of all foetuses between days 19 and 21 post-infection, showing mainly necrotic lesions in foetal liver and the highest parasite DNA detection and burden in both placenta and foetal viscera. After infection at day 90, foetal death was also detected in all ewes, although later (34-48 days post-infection). In this group, lesions were mainly inflammatory. Foetal livers showed the lowest frequency of lesions, as well as the lowest parasite detection and burden. All ewes infected at day 120 delivered viable lambs, although 3 out of 9 showed weakness and recumbency. Neospora DNA was detected in all lambs but one, and parasite burden was similar to that observed in day 90 group. Lesions in this group showed more conspicuous infiltration of inflammatory cells and higher frequency in foetal brain and muscle when compared to both previous groups. These results highlight the crucial role that the stage of gestation plays on the course of ovine neosporosis, similar to that reported in bovine neosporosis, and open the doors to consider sheep as a valid model for exogenous transplacental transmission for ruminant neosporosis.
Resumo:
ABSTRACT : INTRODUCTION : V2-receptor (V2R) stimulation potentially aggravates sepsis-induced vasodilation, fluid accumulation and microvascular thrombosis. Therefore, the present study was performed to determine the effects of a first-line therapy with the selective V2R-antagonist (Propionyl1-D-Tyr(Et)2-Val4-Abu6-Arg8,9)-Vasopressin on cardiopulmonary hemodynamics and organ function vs. the mixed V1aR/V2R-agonist arginine vasopressin (AVP) or placebo in an established ovine model of septic shock. METHODS : After the onset of septic shock, chronically instrumented sheep were randomly assigned to receive first-line treatment with the selective V2R-antagonist (1 g/kg per hour), AVP (0.05 g/kg per hour), or normal saline (placebo, each n = 7). In all groups, open-label norepinephrine was additionally titrated up to 1 g/kg per minute to maintain mean arterial pressure at 70 ± 5 mmHg, if necessary. RESULTS : Compared to AVP- and placebo-treated animals, the selective V2R-antagonist stabilized cardiopulmonary hemodynamics (mean arterial and pulmonary artery pressure, cardiac index) as effectively and increased intravascular volume as suggested by higher cardiac filling pressures. Furthermore, left ventricular stroke work index was higher in the V2R-antagonist group than in the AVP group. Notably, metabolic (pH, base excess, lactate concentrations), liver (transaminases, bilirubin) and renal (creatinine and blood urea nitrogen plasma levels, urinary output, creatinine clearance) dysfunctions were attenuated by the V2R-antagonist when compared with AVP and placebo. The onset of septic shock was associated with an increase in AVP plasma levels as compared to baseline in all groups. Whereas AVP plasma levels remained constant in the placebo group, infusion of AVP increased AVP plasma levels up to 149 ± 21 pg/mL. Notably, treatment with the selective V2R-antagonist led to a significant decrease of AVP plasma levels as compared to shock time (P < 0.001) and to both other groups (P < 0.05 vs. placebo; P < 0.001 vs. AVP). Immunohistochemical analyses of lung tissue revealed higher hemeoxygenase-1 (vs. placebo) and lower 3-nitrotyrosine concentrations (vs. AVP) in the V2R-antagonist group. In addition, the selective V2R-antagonist slightly prolonged survival (14 ± 1 hour) when compared to AVP (11 ± 1 hour, P = 0.007) and placebo (11 ± 1 hour, P = 0.025). CONCLUSIONS : Selective V2R-antagonism may represent an innovative therapeutic approach to attenuate multiple organ dysfunction in early septic shock.
Resumo:
Despite evidence for the important role of oestrogens in the aetiology and pathophysiology of chronic immune/inflammatory diseases, the previous view of an unequivocal beneficial effect of oestrogens on RA compared with a detrimental effect on SLE has to be reconsidered. Likewise, the long-held belief that RA remits in the majority of pregnant patients has been challenged, and shows that only half of the patients experience significant improvement when objective disease activity measurements are applied. Pregnancies in patients with SLE are mostly successful when well planned and monitored interdisciplinarily, whereas a small proportion of women with APS still have adverse pregnancy outcomes in spite of the standard treatment. New prospective studies indicate better outcomes for pregnancies in women with rare diseases such as SSc and vasculitis. Fertility problems are not uncommon in patients with rheumatic disease and need to be considered in both genders. Necessary therapy, shortly before or during the pregnancy, demands taking into account the health of both mother and fetus. Long-term effects of drugs on offspring exposed in utero or during lactation is a new area under study as well as late effects of maternal rheumatic disease on children.
Resumo:
TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.
Resumo:
The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.
Resumo:
Until today the role of oxygen in the development of the fetus remains controversially discussed. It is still believed that lack of oxygen in utero might be responsible for some of the known congenital cardiovascular malformations. Over the last two decades detailed research has given us new insights and a better understanding of embryogenesis and fetal growth. But most importantly it has repeatedly demonstrated that oxygen only plays a minor role in the early intrauterine development. After organogenesis has taken place hypoxia becomes more important during the second and third trimester of pregnancy when fetal growth occurs. This review will briefly adress causes and mechanisms leading to intrauterine hypoxia and their impact on the fetal cardiovascular system.
Resumo:
Conventional MRI may still be an inaccurate method for the non-invasive detection of a microadenoma in adrenocorticotropin (ACTH)-dependent Cushing's syndrome (CS). Bilateral inferior petrosal sinus sampling (BIPSS) with ovine corticotropin-releasing hormone (oCRH) stimulation is an invasive, but accurate, intervention in the diagnostic armamentarium surrounding CS. Until now, there is a continuous controversial debate regarding lateralization data in detecting a microadenoma. Using BIPSS, we evaluated whether a highly selective placement of microcatheters without diversion of venous outflow might improve detection of pituitary microadenoma.
Resumo:
The PediaFlow pediatric ventricular assist device is a miniature magnetically levitated mixed flow pump under development for circulatory support of newborns and infants (3-15 kg) with a targeted flow range of 0.3-1.5 L/min. The first generation design of the PediaFlow (PF1) was manufactured with a weight of approximately 100 g, priming volume less than 2 mL, length of 51 mm, outer diameter of 28 mm, and with 5-mm blood ports. PF1 was evaluated in an in vitro flow loop for 6 h and implanted in ovines for three chronic experiments of 6, 17, and 10 days. In the in vitro test, normalized index of hemolysis was 0.0087 ± 0.0024 g/100L. Hemodynamic performance and blood biocompatibility of PF1 were characterized in vivo by measurements of plasma free hemoglobin, plasma fibrinogen, total plasma protein, and with novel flow cytometric assays to quantify circulating activated ovine platelets. The mean plasma free hemoglobin values for the three chronic studies were 4.6 ± 2.7, 13.3 ± 7.9, and 8.8 ± 3.3 mg/dL, respectively. Platelet activation was low for portions of several studies but consistently rose along with observed animal and pump complications. The PF1 prototype generated promising results in terms of low hemolysis and platelet activation in the absence of complications. Hemodynamic results validated the magnetic bearing design and provided the platform for design iterations to meet the objective of providing circulatory support for young children with exceptional biocompatibility.
Resumo:
Pentalogy of Cantrell (PC) is a rare congenital syndrome involving the abdominal wall, sternum, diaphragm, pericardium, and heart. The embryonic period in which PC develops coincides with that of umbilical cord (UC) formation. The aim of the following study was to address the question of whether PC is associated with UC pathologies. Four cases, prenatally identified between 2002 and 2008, were enrolled in this study. Umbilical cord pathologies defined as single umbilical artery, short cord, or UC with atypical coiling pattern were retrospectively assessed on stored ultrasound images and from autopsy reports. The literature regarding PC and UC pathologies was reviewed. Three singleton pregnancies and 1 monoamniotic twin pregnancy with twin reversed arterial perfusion sequence were reviewed. All had a normal karyotype. Three showed the classical PC stigmata, with ectopia cordis. One fetus had no ectopia cordis; this case had a normal UC, whereas all others fetuses showed a short UC with atypical coiling pattern. Of 26 publications dealing with PC, the UC was described in only 8 cases, 7 of which were abnormal. There seems to be a strong correlation between the PC and UC abnormalities, in particular in cases with ectopia cordis. We speculate that the insult leading to the classical malformations of PC and UC abnormalities is the same or the sequence of malformations itself may alter the early fetoplacental blood flow and therefore the normal development of the UC angioarchitecture.
Resumo:
Noninvasive blood flow measurements based on Doppler ultrasound studies are the main clinical tool for studying the cardiovascular status of fetuses at risk for circulatory compromise. Usually, qualitative analysis of peripheral arteries and in particular clinical situations such as severe growth restriction or volume overload also of venous vessels close to the heart or of flow patterns in the heart is being used to gauge the level of compensation in a fetus. However, quantitative assessment of the driving force of the fetal circulation, the cardiac output remains an elusive goal in fetal medicine. This article reviews the methods for direct and indirect assessment of cardiac function and explains new clinical applications. Part 1 of this review describes the concept of cardiac function and cardiac output and the techniques that have been used to quantify output. Part 2 summarizes the use of arterial and venous Doppler studies in the fetus and gives a detailed description of indirect measurements of cardiac function (like indices derived from the duration of segments of the cardiac cycle) with current examples of their application.
Resumo:
Rhythm analysis of the fetal heart is hampered by the inability to routinely obtain electrocardiographic recordings of the fetus. Doppler studies of fetal cardiac tissue movements, assessing cardiac movements both qualitatively and quantitatively, have recently been described. We used a conventional high-resolution ultrasound system to obtain rhythm data from pulsed-wave tissue Doppler signals of the fetal heart in normal cardiac rhythm and in a variety of fetal cardiac arrhythmias.
Resumo:
Noninvasive blood flow measurements based on Doppler ultrasound studies are the main clinical tool for studying the cardiovascular status in fetuses at risk for circulatory compromise. Usually, qualitative analysis of peripheral arteries and, in particular clinical situations such as severe growth restriction or volume overload, also of venous vessels close to the heart or of flow patterns in the heart are being used to gauge the level of compensation in a fetus. Quantitative assessment of the driving force of the fetal circulation, the cardiac output, however, remains an elusive goal in fetal medicine. This article reviews the methods for direct and indirect assessment of cardiac function and explains new clinical applications. Part 1 of this review describes the concept of cardiac function and cardiac output and the techniques that have been used to quantify output. Part 2 summarizes the use of arterial and venous Doppler studies in the fetus and gives a detailed description of indirect measures of cardiac function (like indices derived from the duration of segments of the cardiac cycle) with current examples of their application.