44 resultados para Optical pattern recognition Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A joint reprocessing of GPS, GLONASS and SLR observations has been carried out at TU Dresden, TU Munich, AIUB and ETH Zurich. Common a priori models have been applied for the processing of all types of observation to ensure both consistent parameter estimates and the rigorous combination of microwave and optical measurements. Based on that reprocessing results, we evaluate the impact of adding GLONASS observations to the standard GPS data processing. In particular, changes in station position time series and day boundary overlaps of consecutive satellite arcs are analyzed. In addition, the GNSS orbits derived from microwave measurements are validated using independent SLR range measurements. Our SLR residuals indicate a significant improvement compared to previous results. Furthermore, we evaluate the performance of our high-rate (30s) combined GNSS satellite clocks and discuss associated zero-difference phase residuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex optimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive we mean a dictionary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In the case of noisy data, our key contribution is to show that this non-convex matrix decomposition problem can be solved in closed form from the SVD of the noisy data matrix. The solution involves a novel polynomial thresholding operator on the singular values of the data matrix, which requires minimal shrinkage. For one subspace, a particular case of our framework leads to classical PCA, which requires no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used to construct a data affinity matrix from which the clustering of the data according to the subspaces can be obtained by spectral clustering. In the case of data corrupted by gross errors, we solve the problem using an alternating minimization approach, which combines our polynomial thresholding operator with the more traditional shrinkage-thresholding operator. Experiments on motion segmentation and face clustering show that our framework performs on par with state-of-the-art techniques at a reduced computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite depth of field of a real camera can be used to estimate the depth structure of a scene. The distance of an object from the plane in focus determines the defocus blur size. The shape of the blur depends on the shape of the aperture. The blur shape can be designed by masking the main lens aperture. In fact, aperture shapes different from the standard circular aperture give improved accuracy of depth estimation from defocus blur. We introduce an intuitive criterion to design aperture patterns for depth from defocus. The criterion is independent of a specific depth estimation algorithm. We formulate our design criterion by imposing constraints directly in the data domain and optimize the amount of depth information carried by blurred images. Our criterion is a quadratic function of the aperture transmission values. As such, it can be numerically evaluated to estimate optimized aperture patterns quickly. The proposed mask optimization procedure is applicable to different depth estimation scenarios. We use it for depth estimation from two images with different focus settings, for depth estimation from two images with different aperture shapes as well as for depth estimation from a single coded aperture image. In this work we show masks obtained with this new evaluation criterion and test their depth discrimination capability using a state-of-the-art depth estimation algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the number of space debris is increasing in the geostationary ring, it becomes mandatory for any satellite operator to avoid any collisions. Space debris in geosynchronous orbits may be observed with optical telescopes. Other than radar, that requires very large dishes and transmission powers for sensing high-altitude objects, optical observations do not depend on active illumination from ground and may be performed with notably smaller apertures. The detection size of an object depends on the aperture of the telescope, sky background and exposure time. With a telescope of 50 cm aperture, objects down to approximately 50 cm may be observed. This size is regarded as a threshold for the identification of hazardous objects and the prevention of potentially catastrophic collisions in geostationary orbits. In collaboration with the Astronomical Institute of the University of Bern (AIUB), the German Space Operations Center (GSOC) is building a small aperture telescope to demonstrate the feasibility of optical surveillance of the geostationary ring. The telescope will be located in the southern hemisphere and complement an existing telescope in the northern hemisphere already operated by AIUB. These two telescopes provide an optimum coverage of European GEO satellites and enable a continuous monitoring independent of seasonal limitations. The telescope will be operated completely automatically. The automated operations should be demonstrated covering the full range of activities including scheduling of observations, telescope and camera control as well as data processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Space debris in geostationary orbits may be detected with optical telescopes when the objects are illuminated by the Sun. The advantage compared to Radar can be found in the illumination: radar illuminates the objects and thus the detection sensitivity depletest proportional to the fourth power of the d istance. The German Space Operation Center, GSOC, together with the Astronomical Institute of the University of Bern, AIUB, are setting up a telescope system called SMARTnet to demonstrate the capability of performing geostationary surveillance. Such a telescope system will consist of two telescopes on one mount: a smaller telescope with an aperture of 20cm will serve for fast survey while the larger one, a telescope with an aperture of 50cm, will be used for follow-up observations. The telescopes will be operated by GSOC from Oberpfaffenhofen by the internal monitoring and control system called SMARTnetMAC. The observation plan will be generated by MARTnetPlanning seven days in advance by applying an optimized planning scheduler, taking into account fault time like cloudy nights, priority of objects etc. From each picture taken, stars will be identified and everything not being a star is treated as a possible object. If the same object can be identified on multiple pictures within a short time span, the trace is called a tracklet. In the next step, several tracklets will be correlated to identify individual objects, ephemeris data for these objects are generated and catalogued . This will allow for services like collision avoidance to ensure safe operations for GSOC’s satellites. The complete data processing chain is handled by BACARDI, the backbone catalogue of relational debris information and is presented as a poster.