39 resultados para Numerical analysis, Finite element method, Nonlinear analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Femoral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. Quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) models have been proved to be more accurate predictors of femoral strength than BMD by adding geometrical and material properties. The aim of this study was to evaluate the ability of hvFE models in predicting femoral stiffness, strength and failure location for a large number of pairs of human femora tested in two different loading scenarios. Methods Thirty-six pairs of femora were scanned with QCT and total proximal BMD and BMC were evaluated. For each pair, one femur was positioned in one-legged stance configuration (STANCE) and the other in a sideways configuration (SIDE). Nonlinear hvFE models were generated from QCT images by reproducing the same loading configurations imposed in the experiments. For experiments and models, the structural properties (stiffness and ultimate load), the failure location and the motion of the femoral head were computed and compared. Results In both configurations, hvFE models predicted both stiffness (R2=0.82 for STANCE and R2=0.74 for SIDE) and femoral ultimate load (R2=0.80 for STANCE and R2=0.85 for SIDE) better than BMD and BMC. Moreover, the models predicted qualitatively well the failure location (66% of cases) and the motion of the femoral head. Conclusions The subject specific QCT-based nonlinear hvFE model cannot only predict femoral apparent mechanical properties better than densitometric measures, but can additionally provide useful qualitative information about failure location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planning of refractive surgical interventions is a challenging task. Numerical modeling has been proposed as a solution to support surgical intervention and predict the visual acuity, but validation on patient specific intervention is missing. The purpose of this study was to validate the numerical predictions of the post-operative corneal topography induced by the incisions required for cataract surgery. The corneal topography of 13 patients was assessed preoperatively and postoperatively (1-day and 30-day follow-up) with a Pentacam tomography device. The preoperatively acquired geometric corneal topography – anterior, posterior and pachymetry data – was used to build patient-specific finite element models. For each patient, the effects of the cataract incisions were simulated numerically and the resulting corneal surfaces were compared to the clinical postoperative measurements at one day and at 30-days follow up. Results showed that the model was able to reproduce experimental measurements with an error on the surgically induced sphere of 0.38D one day postoperatively and 0.19D 30 days postoperatively. The standard deviation of the surgically induced cylinder was 0.54D at the first postoperative day and 0.38D 30 days postoperatively. The prediction errors in surface elevation and curvature were below the topography measurement device accuracy of ±5μm and ±0.25D after the 30-day follow-up. The results showed that finite element simulations of corneal biomechanics are able to predict post cataract surgery within topography measurement device accuracy. We can conclude that the numerical simulation can become a valuable tool to plan corneal incisions in cataract surgery and other ophthalmosurgical procedures in order to optimize patients' refractive outcome and visual function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO3 waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of people who sustain hip fractures after a fall to the side would not have been identified using current screening techniques such as areal bone mineral density. Identifying them, however, is essential so that appropriate pharmacological or lifestyle interventions can be implemented. A protocol, demonstrated on a single specimen, is introduced, comprising the following components; in vitro biofidelic drop tower testing of a proximal femur; high-speed image analysis through digital image correlation; detailed accounting of the energy present during the drop tower test; organ level finite element simulations of the drop tower test; micro level finite element simulations of critical volumes of interest in the trabecular bone. Fracture in the femoral specimen initiated in the superior part of the neck. Measured fracture load was 3760 N, compared to 4871 N predicted based on the finite element analysis. Digital image correlation showed compressive surface strains as high as 7.1% prior to fracture. Voxel level results were consistent with high-speed video data and helped identify hidden local structural weaknesses. We found using a drop tower test protocol that a femoral neck fracture can be created with a fall velocity and energy representative of a sideways fall from standing. Additionally, we found that the nested explicit finite element method used allowed us to identify local structural weaknesses associated with femur fracture initiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitinol stent oversizing is frequently performed in peripheral arteries to ensure a desirable lumen gain. However, the clinical effect of mis-sizing remains controversial. The goal of this study was to provide a better understanding of the structural and hemodynamic effects of Nitinol stent oversizing. Five patient-specific numerical models of non-calcified popliteal arteries were developed to simulate the deployment of Nitinol stents with oversizing ratios ranging from 1.1 to 1.8. In addition to arterial biomechanics, computational fluid dynamics methods were adopted to simulate the physiological blood flow inside the stented arteries. Results showed that stent oversizing led to a limited increase in the acute lumen gain, albeit at the cost of a significant increase in arterial wall stresses. Furthermore, localized areas affected by low Wall Shear Stress increased with higher oversizing ratios. Stents were also negatively impacted by the procedure as their fatigue safety factors gradually decreased with oversizing. These adverse effects to both the artery walls and stents may create circumstances for restenosis. Although the ideal oversizing ratio is stent-specific, this study showed that Nitinol stent oversizing has a very small impact on the immediate lumen gain, which contradicts the clinical motivations of the procedure.