47 resultados para Neuro-signalling
Resumo:
It has not been easy to make sense of the pleiotropic effects of plant hormones, especially of auxins; but now, it has become possible to study these effects within the framework of what we know about signal transduction in general. Changes in local auxin concentrations, perhaps even actively maintained auxin gradients, signal to networks of transcription factors, which in turn signal to downstream effectors. Transcription factors can also signal back to hormone biosynthetic pathways.
Resumo:
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.
Resumo:
Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf–leaf, root–shoot) defence signalling, we explore the role of phytohormones in driving broad-scale patterns of aboveground–belowground interactions that can be extrapolated to general plant–insect relationships. We propose that the outcome of intra-feeding guild interactions is generally negative due to induction of similar phytohormonal pathways, whereas between-guild interactions are often positive due to negative signal crosstalk. However, not all outcomes could be explained by feeding guild; we argue that future studies should target ecologically representative plant–insect systems, distinguish subguilds, and include plant growth hormones to improve our understanding of plant-mediated interactions.
Resumo:
Plants attacked by leaf herbivores release volatile organic compounds (VOCs) both locally from the wounded site and systemically from non-attacked tissues. These volatiles serve as attractants for predators and parasitoids. This phenomenon is well described for plant leaves, but systemic induction of VOCs in the roots has remained unstudied. We assessed the spatial and temporal activation of the synthesis and release of (E)-β-caryophyllene (EβC) in maize roots upon feeding by larvae of Diabrotica virgifera virgifera, as well as the importance of systemically produced EβC for the attraction of the entomopathogenic nematode Heterorhabditis megidis. The production of EβC was found to be significantly stronger at the site of attack than in non-attacked tissues. A weak, but significant, increase in transcriptional activity of the EβC synthase gene tps23 and a corresponding increase in EβC content were observed in the roots above the feeding site and in adjacent roots, demonstrating for the first time that herbivory triggers systemic production of a volatile within root systems. In belowground olfactometers, the nematodes were significantly more attracted towards local feeding sites than systemically induced roots. The possible advantages and disadvantages of systemic volatile signalling in roots are discussed.
Resumo:
BACKGROUND Endometriosis, the growth of endometrial tissue outside the uterine cavity, is associated with chronic pelvic pain, subfertility and an increased risk of ovarian cancer. Current treatments include the surgical removal of the lesions or the induction of a hypoestrogenic state. However, a reappearance of the lesion after surgery is common and a hypoestrogenic state is less than optimal for women of reproductive age. Additional approaches are required. Endometriosis lesions exist in a unique microenvironment characterized by increased concentrations of hormones, inflammation, oxidative stress and iron. This environment influences cell survival through the binding of membrane receptors and a subsequent cascading activation of intracellular kinases that stimulate a cellular response. Many of these kinase signalling pathways are constitutively activated in endometriosis. These pathways are being investigated as therapeutic targets in other diseases and thus may also represent a target for endometriosis treatment. METHODS To identify relevant English language studies published up to 2015 on kinase signalling pathways in endometriosis, we searched the Pubmed database using the following search terms in various combinations; 'endometriosis', 'inflammation', 'oxidative stress', 'iron', 'kinase', 'NF kappa', 'mTOR', 'MAPK' 'p38', 'JNK', 'ERK' 'estrogen' and progesterone'. Further citing references were identified using the Scopus database and finally current clinical trials were searched on the clinicaltrials.gov trial registry. RESULTS The current literature on intracellular kinases activated by the endometriotic environment can be summarized into three main pathways that could be targeted for treatments: the canonical IKKβ/NFκB pathway, the MAPK pathways (ERK1/2, p38 and JNK) and the PI3K/AKT/mTOR pathway. A number of pharmaceutical compounds that target these pathways have been successfully trialled in in vitro and animal models of endometriosis, although they have not yet proceeded to clinical trials. The current generation of kinase inhibitors carry a potential for adverse side effects. CONCLUSIONS Kinase signalling pathways represent viable targets for endometriosis treatment. At present, however, further improvements in clinical efficacy and the profile of adverse effects are required before these compounds can be useful for long-term endometriosis treatment. A better understanding of the molecular activity of these kinases, including the specific extracellular compounds that lead to their activation in endometriotic cells specifically should facilitate their improvement and could potentially lead to new, non-hormonal treatments of endometriosis.
Resumo:
The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.
Resumo:
CONTEXT Most patients with neuro-urological disorders require life-long medical care. The European Association of Urology (EAU) regularly updates guidelines for the diagnosis and treatment of these patients. OBJECTIVE To provide a summary of the 2015 updated EAU Guidelines on Neuro-Urology. EVIDENCE ACQUISITION Structured literature searches in several databases were carried out to update the 2014 guidelines. Levels of evidence and grades of recommendation were assigned where possible. EVIDENCE SYNTHESIS Neurological disorders often cause urinary tract, sexual, and bowel dysfunction. Most neuro-urological patients need life-long care for optimal life expectancy and quality of life. Timely diagnosis and treatment are essential to prevent upper and lower urinary tract deterioration. Clinical assessment should be comprehensive and usually includes a urodynamic investigation. The neuro-urological management must be tailored to the needs of the individual patient and may require a multidisciplinary approach. Sexuality and fertility issues should not be ignored. Numerous conservative and noninvasive possibilities of management are available and should be considered before a surgical approach is chosen. Neuro-urological patients require life-long follow-up and particular attention has to be paid to this aspect of management. CONCLUSIONS The current EAU Guidelines on Neuro-Urology provide an up-to-date overview of the available evidence for adequate diagnosis, treatment, and follow-up of neuro-urological patients. PATIENT SUMMARY Patients with a neurological disorder often suffer from urinary tract, sexual, and bowel dysfunction and life-long care is usually necessary. The update of the EAU Guidelines on Neuro-Urology, summarized in this paper, enables caregivers to provide optimal support to neuro-urological patients. Conservative, noninvasive, or minimally invasive approaches are often possible.
Resumo:
BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.