71 resultados para Network simulator 3
Resumo:
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations.
Resumo:
Phase locking or synchronization of brain areas is a key concept of information processing in the brain. Synchronous oscillations have been observed and investigated extensively in EEG during the past decades. EEG oscillations occur over a wide frequency range. In EEG, a prominent type of oscillations is alpha-band activity, present typically when a subject is awake, but at rest with closed eyes. The spectral power of alpha rhythms has recently been investigated in simultaneous EEG/fMRI recordings, establishing a wide-range cortico-thalamic network. However, spectral power and synchronization are different measures and little is known about the correlations between BOLD effects and EEG synchronization. Interestingly, the fMRI BOLD signal also displays synchronous oscillations across different brain regions. These oscillations delineate so-called resting state networks (RSNs) that resemble the correlation patterns of simultaneous EEG/fMRI recordings. However, the nature of these BOLD oscillations and their relations to EEG activity is still poorly understood. One hypothesis is that the subunits constituting a specific RSN may be coordinated by different EEG rhythms. In this study we report on evidence for this hypothesis. The BOLD correlates of global EEG synchronization (GFS) in the alpha frequency band are located in brain areas involved in specific RSNs, e.g. the 'default mode network'. Furthermore, our results confirm the hypothesis that specific RSNs are organized by long-range synchronization at least in the alpha frequency band. Finally, we could localize specific areas where the GFS BOLD correlates and the associated RSN overlap. Thus, we claim that not only the spectral dynamics of EEG are important, but also their spatio-temporal organization.
Resumo:
Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.
Resumo:
Background Cardiac arrests are handled by teams rather than by individual health-care workers. Recent investigations demonstrate that adherence to CPR guidelines can be less than optimal, that deviations from treatment algorithms are associated with lower survival rates, and that deficits in performance are associated with shortcomings in the process of team-building. The aim of this study was to explore and quantify the effects of ad-hoc team-building on the adherence to the algorithms of CPR among two types of physicians that play an important role as first responders during CPR: general practitioners and hospital physicians. Methods To unmask team-building this prospective randomised study compared the performance of preformed teams, i.e. teams that had undergone their process of team-building prior to the onset of a cardiac arrest, with that of teams that had to form ad-hoc during the cardiac arrest. 50 teams consisting of three general practitioners each and 50 teams consisting of three hospital physicians each, were randomised to two different versions of a simulated witnessed cardiac arrest: the arrest occurred either in the presence of only one physician while the remaining two physicians were summoned to help ("ad-hoc"), or it occurred in the presence of all three physicians ("preformed"). All scenarios were videotaped and performance was analysed post-hoc by two independent observers. Results Compared to preformed teams, ad-hoc forming teams had less hands-on time during the first 180 seconds of the arrest (93 ± 37 vs. 124 ± 33 sec, P < 0.0001), delayed their first defibrillation (67 ± 42 vs. 107 ± 46 sec, P < 0.0001), and made less leadership statements (15 ± 5 vs. 21 ± 6, P < 0.0001). Conclusion Hands-on time and time to defibrillation, two performance markers of CPR with a proven relevance for medical outcome, are negatively affected by shortcomings in the process of ad-hoc team-building and particularly deficits in leadership. Team-building has thus to be regarded as an additional task imposed on teams forming ad-hoc during CPR. All physicians should be aware that early structuring of the own team is a prerequisite for timely and effective execution of CPR.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
A decision support system based on a neural network approach is proposed to advise on insulin regime and dose adjustment for type 1 diabetes patients.
Resumo:
This paper studies the energy-efficiency and service characteristics of a recently developed energy-efficient MAC protocol for wireless sensor networks in simulation and on a real sensor hardware testbed. This opportunity is seized to illustrate how simulation models can be verified by cross-comparing simulation results with real-world experiment results. The paper demonstrates that by careful calibration of simulation model parameters, the inevitable gap between simulation models and real-world conditions can be reduced. It concludes with guidelines for a methodology for model calibration and validation of sensor network simulation models.
Resumo:
BACKGROUND Several treatment strategies are available for adults with advanced-stage Hodgkin's lymphoma, but studies assessing two alternative standards of care-increased dose bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPPescalated), and doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD)-were not powered to test differences in overall survival. To guide treatment decisions in this population of patients, we did a systematic review and network meta-analysis to identify the best initial treatment strategy. METHODS We searched the Cochrane Library, Medline, and conference proceedings for randomised controlled trials published between January, 1980, and June, 2013, that assessed overall survival in patients with advanced-stage Hodgkin's lymphoma given BEACOPPbaseline, BEACOPPescalated, BEACOPP variants, ABVD, cyclophosphamide (mechlorethamine), vincristine, procarbazine, and prednisone (C[M]OPP), hybrid or alternating chemotherapy regimens with ABVD as the backbone (eg, COPP/ABVD, MOPP/ABVD), or doxorubicin, vinblastine, mechlorethamine, vincristine, bleomycin, etoposide, and prednisone combined with radiation therapy (the Stanford V regimen). We assessed studies for eligibility, extracted data, and assessed their quality. We then pooled the data and used a Bayesian random-effects model to combine direct comparisons with indirect evidence. We also reconstructed individual patient survival data from published Kaplan-Meier curves and did standard random-effects Poisson regression. Results are reported relative to ABVD. The primary outcome was overall survival. FINDINGS We screened 2055 records and identified 75 papers covering 14 eligible trials that assessed 11 different regimens in 9993 patients, providing 59 651 patient-years of follow-up. 1189 patients died, and the median follow-up was 5·9 years (IQR 4·9-6·7). Included studies were of high methodological quality, and between-trial heterogeneity was negligible (τ(2)=0·01). Overall survival was highest in patients who received six cycles of BEACOPPescalated (HR 0·38, 95% credibility interval [CrI] 0·20-0·75). Compared with a 5 year survival of 88% for ABVD, the survival benefit for six cycles of BEACOPPescalated is 7% (95% CrI 3-10)-ie, a 5 year survival of 95%. Reconstructed individual survival data showed that, at 5 years, BEACOPPescalated has a 10% (95% CI 3-15) advantage over ABVD in overall survival. INTERPRETATION Six cycles of BEACOPPescalated significantly improves overall survival compared with ABVD and other regimens, and thus we recommend this treatment strategy as standard of care for patients with access to the appropriate supportive care.
Resumo:
New fluorinated hybrid solids [Mo2F2O5(tr2pr)] (1), [Co3(tr2pr)2(MoO4)2F2]·7H2O (2), and [Co3(H2O)2(tr2pr)3(Mo8O26F2)]·3H2O (3) (tr2pr = 1,3-bis(1,2,4-triazol-4-yl)propane) were prepared from the reaction systems consisting of Co(OAc)2/CoF2 and MoO3/(NH4)6Mo7O24, as CoII and MoVI sources, in water (2) or in aqueous HF (1, 3) employing mild hydrothermal conditions. The tr2pr ligand serves as a conformationally flexible tetradentate donor. In complex 1, the octahedrally coordinated Mo atoms are linked in the discrete corner-sharing {Mo2(μ2-O)F2O4N4} unit in which a pair of tr-heterocycles (tr = 1,2,4-triazole) is arranged in cis-positions opposite to “molybdenyl” oxygen atoms. The anti−anti conformation type of tr2pr facilitates the tight zigzag chain packing motif. The crystal structure of the mixed-anion complex salt 2 consists of trinuclear [Co3(μ3-MoO4)2(μ2-F)2] units self-assembling in CoII-undulating chains (Co···Co 3.0709(15) and 3.3596(7) Å), which are cross-linked by tr2pr in layers. In 3, containing condensed oxyfluoromolybdate species, linear centrosymmetric [Co3(μ2-tr)6]6+ SBUs are organized at distances of 10.72−12.45 Å in an α-Po-like network using bitopic tr-linkers. The octahedral {N6} and {N3O3} environments of the central and peripheral cobalt atoms, respectively, are filled by triazole N atoms, water molecules, and coordinating [Mo8O26F2]6− anions. Acting as a tetradentate O-donor, each difluorooctamolybdate anion anchors four [Co3(μ2-tr)6]6+ units through their peripheral Co-sites, which consequently leads to a novel type of a two-nodal 4,10-c net with the Schläfli symbol {32.43.5}{34.420.516.65}. The 2D and 3D coordination networks of 2 and 3, respectively, are characterized by significant overall antiferromagnetic exchange interactions (J/k) between the CoII spin centers on the order of −8 and −4 K. The [Mo8O26F2]6− anion is investigated in detail by quantum chemical calculations.
Resumo:
Intussusceptive angiogenesis is a novel mode of blood vessel formation and remodeling, which occurs by internal division of the preexisting capillary plexus without sprouting. In this study, the process is demonstrated in developing chicken eye vasculature and in the chorioallantoic membrane by methylmethacrylate (Mercox) casting, transmission electron microscopy, and in vivo observation. In a first step of intussusceptive angiogenesis, the capillary plexus expands by insertion of numerous transcapillary tissue pillars, ie, by intussusceptive microvascular growth. In a subsequent step, a vascular tree arises from the primitive capillary plexus as a result of intussusceptive pillar formation and pillar fusions, a process we termed "intussusceptive arborization." On the basis of the morphological observations, a 4-step model for intussusceptive arborization is proposed, as follows: phase I, numerous circular pillars are formed in rows, thus demarcating future vessels; phase II, formation of narrow tissue septa by pillar reshaping and pillar fusions; phase III, delineation, segregation, growth, and extraction of the new vascular entity by merging of septa; and phase IV, formation of new branching generations by successively repeating the process, complemented by growth and maturation of all components. In contrast to sprouting, intussusceptive angiogenesis does not require intense local endothelial cell proliferation; it is implemented primarily by rearrangement and attenuation of the endothelial cell plates. In summary, transcapillary pillar formation, ie, intussusception, is a central and probably widespread process, which plays a role not only in capillary network growth and expansion (intussusceptive microvascular growth), but also in vascular plexus remodeling and tree formation (intussusceptive arborization).
Resumo:
We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre® YeastOne™ test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.
Resumo:
Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.