67 resultados para Muscle Cell-proliferation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the formation of sphingosine-1-phosphate (S1P) which plays a crucial role in cell growth and survival. Here, we show that prolactin (PRL) biphasically activates the SK-1, but not the SK-2 subtype, in the breast adenocarcinoma cell-line MCF7. A first peak occurs after minutes of stimulation and is followed by a second delayed activation after hours of stimulation. A similar biphasic effect on SK-1 activity is seen for 17beta-estradiol (E(2)). The delayed activation of SK-1 derives from an upregulated mRNA and protein expression and is due to increased SK-1 promoter activity and mechanistically involves STAT5 activation as well as protein kinase C and the classical mitogen-activated protein kinases. Furthermore, glucocorticoids also block both hormone-induced SK-1 expression and activity. Functionally, long-term stimulation of MCF7 cells with PRL or E(2) is well known to trigger increased cell proliferation and migration. Both hormone-induced cell responses critically involve SK-1 activation since the depletion of SK-1, but not SK-2, by siRNA transfection abolishes the hormone-induced cell proliferation and migration. In summary, our data show that PRL and E(2) cause a pronounced delayed SK-1 activation which is due to increased gene transcription, and critically determines the capability of cells to grow and move. Thus, the SK-1 may represent a novel attractive target for anti-tumor therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the phosphorylation of proapoptotic sphingosine to the prosurvival factor sphingosine 1-phosphate (S1P), thereby promoting oncogenic processes. Breast (MDA-MB-231), lung (NCI-H358), and colon (HCT 116) carcinoma cells were transduced with shRNA to downregulate SK-1 expression or treated with a pharmacologic SK-1 inhibitor. The effects of SK-1 targeting were investigated by measuring the level of intracellular sphingosine, the activity of protein kinase C (PKC) and cell cycle regulators, and the mitotic index. Functional assays included measurement of cell proliferation, colony formation, apoptosis, and cell cycle analysis. Downregulation of SK-1 or its pharmacologic inhibition increased intracellular sphingosine and decreased PKC activity as shown by reduced phosphorylation of PKC substrates. In MDA-MB-231 cells this effect was most pronounced and reduced cell proliferation and colony formation, which could be mimicked using exogenous sphingosine or the PKC inhibitor RO 31-8220. SK-1 downregulation in MDA-MB-231 cells increased the number of cells with 4N and 8N DNA content, and similar effects were observed upon treatment with sphingosine or inhibitors of SK-1 or PKC. Examination of cell cycle regulators unveiled decreased cdc2 activity and expression of Chk1, which may compromise spindle checkpoint function and cytokinesis. Indeed, SK-1 kd cells entered mitosis but failed to divide, and in the presence of taxol also failed to sustain mitotic arrest, resulting in further increased endoreduplication and apoptosis. Our findings delineate an intriguing link between SK-1, PKC and components of the cell cycle machinery, which underlines the significance of SK-1 as a target for cancer therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parasites have evolved a plethora of mechanisms to ensure their propagation and evade antagonistic host responses. The intracellular protozoan parasite Theileria is the only eukaryote known to induce uncontrolled host cell proliferation. Survival of Theileria-transformed leukocytes depends strictly on constitutive nuclear factor kappa B (NF-kappaB) activity. We found that this was mediated by recruitment of the multisubunit IkappaB kinase (IKK) into large, activated foci on the parasite surface. IKK signalosome assembly was specific for the transforming schizont stage of the parasite and was down-regulated upon differentiation into the nontransforming merozoite stage. Our findings provide insights into IKK activation and how pathogens subvert host-cell signaling pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the most important immunopathological consequence of intraperitoneal alveolar echinococcosis (AE) in the mouse is suppression of T cell-mediated immune responses. We investigated whether and how intraperitoneal macrophages (MØs) are, respectively, implicated as antigen-presenting cells (APCs). In a first step we showed that peritoneal MØs from infected mice (AE-MØs) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells. In a subsequent step, AE-MØs as well as naïve MØs (positive control) proved their ability to uptake and process C-Ova fluorescein isthiocyanate (FITC). Furthermore, in comparison with naïve MØs, the surface expression of Ia molecules was up-regulated on AE-MØs at the early stage of infection, suggesting that AE-MØs provide the first signal via the antigen-Ia complex. To study the accessory activity of MØs, AE-MØs obtained at the early and late stages of infection were found to decrease Con A-induced proliferation of peritoneal naïve T cells as well as of AE-sensitized peritoneal T cells, in contrast to stimulation with naïve MØs. The status of accessory molecules was assessed by analysing the expression level of costimulatory molecules on AE-MØs, with naïve MØs as controls. It was found that B7-1 (CD80) and B7-2 (CD86) expression remained unchanged, whereas CD40 was down-regulated and CD54 (= ICAM-1) was slightly up-regulated. In a leucocyte reaction of AE-MØs with naïve or AE-T cells, both types of T cells increased their proliferative response when CD28 - the ligand of B7 receptors - was exposed to anti-CD28 in cultures. Conversely to naïve MØs, pulsing of AE-MØs with agonistic anti-CD40 did not even partially restore their costimulatory activity and failed to increase naïve or AE-T cell proliferation. Neutralizing anti-B7-1, in combination with anti-B7-2, reduced naïve and AE-T cell proliferation, whereas anti-CD40 treatment of naïve MØs increased their proliferative response to Con A. These results point at the key role of B7 receptors as accessory molecules and the necessity of the integrity of CD40-expression by naïve MØs to improve their accessory activity. Taken together, the obstructed presenting-activity of AE-MØs appeared to trigger an unresponsiveness of T cells, contributing to the suppression of their clonal expansion during the chronic phase of AE-infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: We wished to investigate the toxicity of four immunosuppressant and antimetabolic drugs, which are known to influence postoperative wound healing, on three different human ocular cell lines. METHODS: Acute toxicity to cyclosporin A, azathioprine, mitomicyn C and daunorubicin was assessed in Chang cells by monitoring their uptake of propidium iodide during a 3-h period. Chronic toxicity was assessed by monitoring the proliferation and viability of subconfluent cultures of Chang cells, human corneal endothelial cells (HCECs) and retinal pigmented epithelial (RPE) cells after continuous exposure to the drugs for 7 days. RESULTS: Acute toxicity testing revealed no obvious effects. However, the chronic toxicity tests disclosed a narrow concentration range over which cell proliferation decreased dramatically but calcein metabolism was sustained. Although the three lines reacted similarly to each agent, HCECs were the most vulnerable to daunorubicin and mitomycin. At a daunorubicin concentration of 0.05 microg/ml, a 75% decrease in calcein metabolism (P < 0.001) and a > or = 95% cell loss (P < 0.001) were observed. At a mitomycin concentration of 0.01 mug/ml, cell density decreased by 61% (P < 0.001) without a change in calcein metabolism, but at 0.1 microg/ml, the latter parameter decreased to 12% (P = 0.00014). At this concentration the proliferation of Chang and RPE cells decreased by more than 50%, whilst calcein metabolism was largely sustained. Cyclosporin inhibited cell proliferation moderately at lower concentrations (< 5 microg/ml; P=0.05) and substantially at higher ones, with a corresponding decline in calcein metabolism. Azathioprine induced a profound decrease in both parameters at concentrations above 5 microg/ml. CONCLUSION: Daunorubicin, cyclosporin and azathioprine could be used to inhibit excessive intraocular scarring after glaucoma and vitreoretinal surgery without overly reducing cell viability. The attributes of immunosuppressants lie in their combined antiproliferative and immunomodulatory effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Continuous changes in the length of smooth muscles require a highly organized sarcolemmal structure. Yet, smooth muscle cells also adapt rapidly to altered environmental cues. Their sarcolemmal plasticity must lead to profound changes which affect transmembrane signal transduction as well as contractility. We have established porcine vascular and human visceral smooth muscle cultures of epithelioid and spindle-shaped morphology and determined their plasma membrane properties. Epithelioid cells from both sources contain a higher ratio of cholesterol to glycerophospholipids, and express a less diverse range of lipid-associated annexins. These findings point to a reduction in efficiency of membrane segregation in epithelioid cells. Moreover, compared to spindle-shaped cells, cholesterol is more readily extracted from epithelioid cells with methyl-beta-cyclodextrin and its synthesis is more susceptible to inhibition with lovastatin. The inability of epithelioid cells to process vasoactive metabolites, such as angiotensin or nucleotides further indicates that contractile properties are impaired. Phenotypic plasticity extends beyond the loss of smooth muscle cell marker genes. The plasma membrane has undergone profound functional changes which are incompatible with cyclic foreshortening, but might be important in the development of vascular disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Muscle pain and weakness are frequent complaints in patients receiving 3-hydroxymethylglutaryl coenzymeA (HMG CoA) reductase inhibitors (statins). Many patients with myalgia have creatine kinase levels that are either normal or only marginally elevated, and no obvious structural defects have been reported in patients with myalgia only. To investigate further the mechanism that mediates statin-induced skeletal muscle damage, skeletal muscle biopsies from statin-treated and non-statin-treated patients were examined using both electron microscopy and biochemical approaches. The present paper reports clear evidence of skeletal muscle damage in statin-treated patients, despite their being asymptomatic. Though the degree of overall damage is slight, it has a characteristic pattern that includes breakdown of the T-tubular system and subsarcolemmal rupture. These characteristic structural abnormalities observed in the statin-treated patients were reproduced by extraction of cholesterol from skeletal muscle fibres in vitro. These findings support the hypothesis that statin-induced cholesterol lowering per se contributes to myocyte damage and suggest further that it is the specific lipid/protein organization of the skeletal muscle cell itself that renders it particularly vulnerable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CD40 and its ligand regulate pleiotropic biological responses, including cell proliferation, differentiation, and apoptosis. In many inflammatory lung diseases, tissue damage by environmental or endogenous oxidants plays a major role in disease pathogenesis. As the epithelial barrier is a major target for these oxidants, we postulated that CD40, the expression of which is increased in asthma, plays a role in the regulation of apoptosis of bronchial epithelial cells exposed to oxidants. Using 16HBE 14o- cells exposed to oxidant stress, we found that ligation of CD40 (induced by G28-5 monoclonal antibodies) enhanced cell survival and increased the number of cells in G2/M (interphase between DNA synthesis and mitosis) of the cell cycle. This was associated with NF-kappaB and activator protein-1 activation and increased expression of the inhibitor of apoptosis, c-IAP1. However, oxidant stress-induced apoptosis was found to be caspase- and calpain-independent implicating CD40 ligation as a regulator of caspase-independent cell death. This was confirmed by the demonstration that CD40 ligation prevented mitochondrial release and nuclear translocation of apoptosis inducing factor. In conclusion, we demonstrate a novel role for CD40 as a regulator of epithelial cell survival against oxidant stress. Furthermore, we have identified, for the first time, an endogenous inhibitory pathway of caspase-independent cell death.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. gamma-tocopherol at 50 microM concentration exerted more inhibitory effect than alpha-tocopherol at the same concentration on glioma cell proliferation. Integrin alpha5 and beta1 protein levels were increased upon both alpha- and gamma-tocopherol treatments. In parallel, an increase in the alpha5beta1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where gamma-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin alpha5 and beta1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the alpha5beta1 heterodimer. Cell migration is stimulated by gamma-tocopherol. It is concluded that alpha5 and beta1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Incipient diabetic retinopathy is characterized by increased capillary permeability and progressive capillary occlusion. The earliest structural change is the loss of pericytes (PC) from the retinal capillaries. With the availability of the XLacZ mouse, which expresses the LacZ reporter in a PC/vascular smooth muscle cell (vSMC) specific fashion, we quantitatively assessed the temporal dynamics of smooth muscle cells in arterioles under hyperglycemic conditions. We induced stable hyperglycemia in XLacZ mice. After 4, 8, and 12 weeks of diabetes retinae were isolated and beta-galactosidase/lectin stained. The numbers of smooth muscle cells were counted in retinal whole mounts, and diameters of retinal radial and branching arterioles and venules were analyzed at different distances apart from the center of the retina. After eight weeks of diabetes, the numbers of vSMCs were significantly reduced in radial arterioles 1000 microm distant from the optic disc. At proximal sites of branching arterioles (400 microm distant from the center), and at distal sites (1000 microm), vSMC were significantly reduced already after 4 weeks (to a maximum of 31 %). These changes were not associated with any measurable variation in vessel diameters. These data indicate quantitatively that hyperglycemia not only causes pericyte loss, but also loss of vSMCs in the retinal vasculature. Our data suggest that arteriolar vSMC in the eye underlie similar regulations which induce early pericyte loss in the diabetic retina.