33 resultados para Multi-dimensional Numbered Information Spaces
Resumo:
Information-centric networking (ICN) addresses drawbacks of the Internet protocol, namely scalability and security. ICN is a promising approach for wireless communication because it enables seamless mobile communication, where intermediate or source nodes may change, as well as quick recovery from collisions. In this work, we study wireless multi-hop communication in Content-Centric Networking (CCN), which is a popular ICN architecture. We propose to use two broadcast faces that can be used in alternating order along the path to support multi-hop communication between any nodes in the network. By slightly modifying CCN, we can reduce the number of duplicate Interests by 93.4 % and the number of collisions by 61.4 %. Furthermore, we describe and evaluate different strategies for prefix registration based on overhearing. Strategies that configure prefixes only on one of the two faces can result in at least 27.3 % faster data transmissions.
Resumo:
Information-centric networking (ICN) is a promising approach for wireless communication because users can exploit the broadcast nature of the wireless medium to quickly find desired content at nearby nodes. However, wireless multi-hop communication is prone to collisions and it is crucial to quickly detect and react to them to optimize transmission times and a void spurious retransmissions. Several adaptive retransmission timers have been used in related ICN literature but they have not been compared and evaluated in wireless multi-hop environments. In this work, we evaluate existing algorithms in wireless multi-hop communication. We find that existing algorithms are not optimized for wireless communication but slight modificati ons can result in considerably better performance without increasing the number of transmitted Interests.
Resumo:
Abstract Information-centric networking (ICN) offers new perspectives on mobile ad-hoc communication because routing is based on names but not on endpoint identifiers. Since every content object has a unique name and is signed, authentic content can be stored and cached by any node. If connectivity to a content source breaks, it is not necessarily required to build a new path to the same source but content can also be retrieved from a closer node that provides the same content copy. For example, in case of collisions, retransmissions do not need to be performed over the entire path but due to caching only over the link where the collision occurred. Furthermore, multiple requests can be aggregated to improve scalability of wireless multi-hop communication. In this work, we base our investigations on Content-Centric Networking (CCN), which is a popular {ICN} architecture. While related works in wireless {CCN} communication are based on broadcast communication exclusively, we show that this is not needed for efficient mobile ad-hoc communication. With Dynamic Unicast requesters can build unicast paths to content sources after they have been identified via broadcast. We have implemented Dynamic Unicast in CCNx, which provides a reference implementation of the {CCN} concepts, and performed extensive evaluations in diverse mobile scenarios using NS3-DCE, the direct code execution framework for the {NS3} network simulator. Our evaluations show that Dynamic Unicast can result in more efficient communication than broadcast communication, but still supports all {CCN} advantages such as caching, scalability and implicit content discovery.