59 resultados para Model combination
Resumo:
OBJECTIVES: To test the efficacy of EDP-420, a new ketolide, in experimental pneumococcal meningitis and to determine its penetration into the CSF. METHODS: The experimental rabbit model was used in this study and EDP-420 was tested against a penicillin-resistant and a penicillin- and quinolone-resistant mutant. EDP-420 was also tested against both strains in time-killing assays over 8 h in vitro. RESULTS: In experimental meningitis, EDP-420 produced a bactericidal activity comparable to the standard regimen based on a combination of vancomycin with ceftriaxone against a penicillin-resistant Streptococcus pneumoniae and a penicillin- and quinolone-resistant S. pneumoniae isolate. The penetration of EDP-420 into inflamed meninges was 38% after an i.v. injection of 10 mg/kg. The bactericidal activity of EDP-420 was also confirmed in in vitro time-killing assays. CONCLUSIONS: EDP-420 is an efficacious alternative treatment in pneumococcal meningitis, especially when resistant strains are suspected.
Resumo:
OBJECTIVES: To analyze computer-assisted diagnostics and virtual implant planning and to evaluate the indication for template-guided flapless surgery and immediate loading in the rehabilitation of the edentulous maxilla. MATERIALS AND METHODS: Forty patients with an edentulous maxilla were selected for this study. The three-dimensional analysis and virtual implant planning was performed with the NobelGuide software program (Nobel Biocare, Göteborg, Sweden). Prior to the computer tomography aesthetics and functional aspects were checked clinically. Either a well-fitting denture or an optimized prosthetic setup was used and then converted to a radiographic template. This allowed for a computer-guided analysis of the jaw together with the prosthesis. Accordingly, the best implant position was determined in relation to the bone structure and prospective tooth position. For all jaws, the hypothetical indication for (1) four implants with a bar overdenture and (2) six implants with a simple fixed prosthesis were planned. The planning of the optimized implant position was then analyzed as follows: the number of implants was calculated that could be placed in sufficient quantity of bone. Additional surgical procedures (guided bone regeneration, sinus floor elevation) that would be necessary due the reduced bone quality and quantity were identified. The indication of template-guided, flapless surgery or an immediate loaded protocol was evaluated. RESULTS: Model (a) - bar overdentures: for 28 patients (70%), all four implants could be placed in sufficient bone (total 112 implants). Thus, a full, flapless procedure could be suggested. For six patients (15%), sufficient bone was not available for any of their planned implants. The remaining six patients had exhibited a combination of sufficient or insufficient bone. Model (b) - simple fixed prosthesis: for 12 patients (30%), all six implants could be placed in sufficient bone (total 72 implants). Thus, a full, flapless procedure could be suggested. For seven patients (17%), sufficient bone was not available for any of their planned implants. The remaining 21 patients had exhibited a combination of sufficient or insufficient bone. DISCUSSION: In the maxilla, advanced atrophy is often observed, and implant placement becomes difficult or impossible. Thus, flapless surgery or an immediate loading protocol can be performed just in a selected number of patients. Nevertheless, the use of a computer program for prosthetically driven implant planning is highly efficient and safe. The three-dimensional view of the maxilla allows the determination of the best implant position, the optimization of the implant axis, and the definition of the best surgical and prosthetic solution for the patient. Thus, a protocol that combines a computer-guided technique with conventional surgical procedures becomes a promising option, which needs to be further evaluated and improved.
Resumo:
We examined the cerebrospinal fluid penetration of daptomycin after the addition of dexamethasone and its bactericidal efficacy with and without ceftriaxone in an experimental rabbit model of pneumococcal meningitis. The combination of daptomycin with ceftriaxone was the most efficacious regimen for pneumococcal meningitis. The previous addition of dexamethasone affected the antibacterial activity of daptomycin only marginally, either as monotherapy or combined with ceftriaxone, although the penetration of daptomycin into inflamed meninges was significantly reduced from 6 to 2%. Daptomycin with ceftriaxone might be a potential candidate for the empirical therapy of bacterial meningitis, although the activity of this regimen against Listeria monocytogenes remains to be demonstrated.
Resumo:
In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.
Resumo:
Study Design. In vitro study to develop an intervertebral disc degeneration (IDD) organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4 and HTRA1.Objective. This study aimed to develop an in-vitro model of enzyme-mediated IDD to mimic the clinical outcome in humans for investigation of therapeutic treatment options.Summary of Background Data. Bovine IVDs are comparable to human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an IDD model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant.Methods. Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4 and HTRA1 were injected at a dose of 10μg/ml each. Phosphate buffered saline (PBS) was injected as a control. Discs were cultured for 8 days and loaded diurnally (day 1 to day 4 with 0.4 MPa for 16 h) and left under free swelling condition from day 4 to day 8 to avoid expected artifacts due to dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, glycosaminoglycan (GAG) content, total collagen content, relative gene expression and histological investigation.Results. The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 compared to the day 0 control discs. Disc height was decreased following injection with HTRA1, and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3.Conclusion. MMP-3, ADAMTS-4 and HTRA1 neither provoked visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height which positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may therefore be necessary to induce disc degeneration
Resumo:
Background. Few studies consider the incidence of individual AIDS-defining illnesses (ADIs) at higher CD4 counts, relevant on a population level for monitoring and resource allocation. Methods. Individuals from the Collaboration of Observational HIV Epidemiological Research Europe (COHERE) aged ≥14 years with ≥1 CD4 count of ≥200 µL between 1998 and 2010 were included. Incidence rates (per 1000 person-years of follow-up [PYFU]) were calculated for each ADI within different CD4 strata; Poisson regression, using generalized estimating equations and robust standard errors, was used to model rates of ADIs with current CD4 ≥500/µL. Results. A total of 12 135 ADIs occurred at a CD4 count of ≥200 cells/µL among 207 539 persons with 1 154 803 PYFU. Incidence rates declined from 20.5 per 1000 PYFU (95% confidence interval [CI], 20.0–21.1 per 1000 PYFU) with current CD4 200–349 cells/µL to 4.1 per 1000 PYFU (95% CI, 3.6–4.6 per 1000 PYFU) with current CD4 ≥ 1000 cells/µL. Persons with a current CD4 of 500–749 cells/µL had a significantly higher rate of ADIs (adjusted incidence rate ratio [aIRR], 1.20; 95% CI, 1.10–1.32), whereas those with a current CD4 of ≥1000 cells/µL had a similar rate (aIRR, 0.92; 95% CI, .79–1.07), compared to a current CD4 of 750–999 cells/µL. Results were consistent in persons with high or low viral load. Findings were stronger for malignant ADIs (aIRR, 1.52; 95% CI, 1.25–1.86) than for nonmalignant ADIs (aIRR, 1.12; 95% CI, 1.01–1.25), comparing persons with a current CD4 of 500–749 cells/µL to 750–999 cells/µL. Discussion. The incidence of ADIs was higher in individuals with a current CD4 count of 500–749 cells/µL compared to those with a CD4 count of 750–999 cells/µL, but did not decrease further at higher CD4 counts. Results were similar in patients virologically suppressed on combination antiretroviral therapy, suggesting that immune reconstitution is not complete until the CD4 increases to >750 cells/µL.
Resumo:
Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400μl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomon®' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration.
Resumo:
The significance of the adjacent cartilage in cartilage defect healing is not yet completely understood. Furthermore, it is unknown if the adjacent cartilage can somehow be influenced into responding after cartilage damage. The present study was undertaken to investigate whether the adjacent cartilage can be better sustained after microfracturing in a cartilage defect model in the stifle joint of sheep using a transcutaneous treatment concept (Vetdrop(®)). Carprofen and chito-oligosaccharids were added either as single components or as a mixture to a vehicle suspension consisting of a herbal carrier oil in a water-in-oil phase. This mixture was administered onto the skin with the aid of a specific applicator during 6 weeks in 28 sheep, allocated into 6 different groups, that underwent microfracturing surgery either on the left or the right medial femoral condyle. Two groups served as control and were either treated intravenously or sham treated with oxygen only. Sheep were sacrificed and their medial condyle histologically evaluated qualitatively and semi-quantitatively according to 4 different scoring systems (Mankin, ICRS, Little and O'Driscoll). The adjacent cartilage of animals of group 4 treated transcutaneously with vehicle, chito-oligosaccharids and carprofen had better histological scores compared to all the other groups (Mankin 3.3±0.8, ICRS 15.7±0.7, Little 9.0±1.4). Complete defect filling was absent from the transcutaneous treatment groups. The experiment suggests that the adjacent cartilage is susceptible to treatment and that the combination of vehicle, chitooligosaccharids and carprofen may sustain the adjacent cartilage during the recovery period.
Resumo:
Objective: Impaired cognition is an important dimension in psychosis and its at-risk states. Research on the value of impaired cognition for psychosis prediction in at-risk samples, however, mainly relies on study-specific sample means of neurocognitive tests, which unlike widely available general test norms are difficult to translate into clinical practice. The aim of this study was to explore the combined predictive value of at-risk criteria and neurocognitive deficits according to test norms with a risk stratification approach. Method: Potential predictors of psychosis (neurocognitive deficits and at-risk criteria) over 24 months were investigated in 97 at-risk patients. Results: The final prediction model included (1) at-risk criteria (attenuated psychotic symptoms plus subjective cognitive disturbances) and (2) a processing speed deficit (digit symbol test). The model was stratified into 4 risk classes with hazard rates between 0.0 (both predictors absent) and 1.29 (both predictors present). Conclusions: The combination of a processing speed deficit and at-risk criteria provides an optimized stratified risk assessment. Based on neurocognitive test norms, the validity of our proposed 3 risk classes could easily be examined in independent at-risk samples and, pending positive validation results, our approach could easily be applied in clinical practice in the future.
Resumo:
An Ensemble Kalman Filter is applied to assimilate observed tracer fields in various combinations in the Bern3D ocean model. Each tracer combination yields a set of optimal transport parameter values that are used in projections with prescribed CO2 stabilization pathways. The assimilation of temperature and salinity fields yields a too vigorous ventilation of the thermocline and the deep ocean, whereas the inclusion of CFC-11 and radiocarbon improves the representation of physical and biogeochemical tracers and of ventilation time scales. Projected peak uptake rates and cumulative uptake of CO2 by the ocean are around 20% lower for the parameters determined with CFC-11 and radiocarbon as additional target compared to those with salinity and temperature only. Higher surface temperature changes are simulated in the Greenland–Norwegian–Iceland Sea and in the Southern Ocean when CFC-11 is included in the Ensemble Kalman model tuning. These findings highlights the importance of ocean transport calibration for the design of near-term and long-term CO2 emission mitigation strategies and for climate projections.
Resumo:
Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial–interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr−1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.
Resumo:
Objective: Since the beginning of the integrated care model for severely ill patients with psychotic disorders ("Hamburg model") in 2007 different clinical parameters have been consecutively assessed within a naturalistic, observational, prospective study.Methods: Clinical outcome of the 2-year and 4-year follow-ups of n = 158 patients.Results: A significant and ongoing improvement of psychopathology, severity of illness, functional outcome, quality of life and satisfaction with care in this sample of severely ill and merely chronic patients with psychosis was shown. Moreover, medication adherence improved and quality and quantity of outpatient treatment increased.Conclusion: The ongoing psychosocial stabilisation of the patients most likely result from a combination of various factors: continuity of care, multimodal and individualized care, therapeutic specialisation and the multidisciplinary ACT team. Results provide clinical and scientific evidence for future implementations of the integrated care model "Hamburg Model" for the treatment of psychosis.
Resumo:
OBJECTIVE To study the hemodynamic effects of exogenously administered endothelin-1 (ET-1), a peptide produced by endothelial cells with potent non-adrenergically mediated vasoconstrictor properties. METHODS A prospective drug intervention study was carried out in a resuscitation research laboratory. Fifteen mixed-breed dogs were anesthetized and instrumented for hemodynamic monitoring. Asphyxia arrest was produced by clamping the endotracheal tube. Hemodynamic data were collected continuously. Following loss of aortic fluctuations monitored by thoracic aortic catheter, the animals remained in pulseless electrical activity (PEA) for 10 minutes. After 10 minutes of no-flow PEA, closed-chest CPR was begun and the animals were randomized to one of three treatment groups (EPI, 0.02 mg/kg epinephrine IV every 3 minutes; ENDO, 100 micrograms ET-1 IV at 0 minutes; and EPI/ENDO, a combination of the EPI and ENDO treatments). RESULTS ENDO and EPI alone produced similar coronary perfusion pressures (CPPs). The EPI/ENDO combination produced significantly improved CPP compared with that of either EPI or ENDO alone. In the EPI group, the best mean CPP was 16 +/- 14 mm Hg and occurred 7 minutes after drug administration. In the ENDO group, the best mean CPP was 28 +/- 7 mm Hg and occurred 13 minutes after drug administration. In the EPI/ENDO combination group, the best mean CPP was 61 +/- 37 mm Hg and occurred 7 minutes after drug administration (p < 0.05 compared with the EPI and ENDO groups alone). CONCLUSION ET-1 is a potent vasoconstrictor. The combination of EPI and ENDO significantly improved CPP compared with that for either agent alone. ET-1 should be investigated further as a vasoconstrictor in cardiac arrest.
Resumo:
This chapter introduces a conceptual model to combine creativity techniques with fuzzy cognitive maps (FCMs) and aims to support knowledge management methods by improving expert knowledge acquisition and aggregation. The aim of the conceptual model is to represent acquired knowledge in a manner that is as computer-understandable as possible with the intention of developing automated reasoning in the future as part of intelligent information systems. The formal represented knowledge thus may provide businesses with intelligent information integration. To this end, we introduce and evaluate various creativity techniques with a list of attributes to define the most suitable to combine with FCMs. This proposed combination enables enhanced knowledge management through the acquisition and representation of expert knowledge with FCMs. Our evaluation indicates that the creativity technique known as mind mapping is the most suitable technique in our set. Finally, a scenario from stakeholder management demonstrates the combination of mind mapping with FCMs as an integrated system.
Resumo:
OBJECTIVES Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM. MATERIALS AND METHODS Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed. RESULTS Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05). CONCLUSIONS The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects. CLINICAL RELEVANCE These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.