39 resultados para Mobile video quality
Resumo:
Introduction In our program, simulated patients (SPs) give feedback to medical students in the course of communication skills training. To ensure effective training, quality control of the SPs’ feedback should be implemented. At other institutions, medical students evaluate the SPs’ feedback for quality control (Bouter et al., 2012). Thinking about implementing quality control for SPs’ feedback in our program, we wondered whether the evaluation by students would result in the same scores as evaluation by experts. Methods Consultations simulated by 4th-year medical students with SPs were video taped including the SP’s feedback to the students (n=85). At the end of the training sessions students rated the SPs’ performance using a rating instrument called Bernese Assessment for Role-play and Feedback (BARF) containing 11 items concerning feedback quality. Additionally the videos were evaluated by 3 trained experts using the BARF. Results The experts showed a high interrater agreement when rating identical feedbacks (ICCunjust=0.953). Comparing the rating of students and experts, high agreement was found with regard to the following items: 1. The SP invited the student to reflect on the consultation first, Amin (= minimal agreement) 97% 2. The SP asked the student what he/she liked about the consultation, Amin = 88%. 3. The SP started with positive feedback, Amin = 91%. 4. The SP was comparing the student with other students, Amin = 92%. In contrast the following items showed differences between the rating of experts and students: 1. The SP used precise situations for feedback, Amax (=maximal agreement) 55%, Students rated 67 of SPs’ feedbacks to be perfect with regard to this item (highest rating on a 5 point Likert scale), while only 29 feedbacks were rated this way by the experts. 2. The SP gave precise suggestions for improvement, Amax 75%, 62 of SPs’ feedbacks obtained the highest rating from students, while only 44 of SPs’ feedbacks achieved the highest rating in the view of the experts. 3. The SP speaks about his/her role in the third person, Amax 60%. Students rated 77 feedbacks with the highest score, while experts judged only 43 feedbacks this way. Conclusion Although evaluation by the students was in agreement with that of experts concerning some items, students rated the SPs’ feedback more often with the optimal score than experts did. Moreover it seems difficult for students to notice when SPs talk about the role in the first instead of the third person. Since precision and talking about the role in the third person are important quality criteria of feedback, this result should be taken into account when thinking about students’ evaluation of SPs’ feedback for quality control. Bouter, S., E. van Weel-Baumgarten, and S. Bolhuis. 2012. Construction and Validation of the Nijmegen Evaluation of the Simulated Patient (NESP): Assessing Simulated Patients’ Ability to Role-Play and Provide Feedback to Students. Academic Medicine: Journal of the Association of American Medical Colleges
Resumo:
Introduction: Video‐Supported Learning is particularly effective when it comes to skills and behaviors. Video registration of patient‐physician interviews, class room instruction or practical skills allow it to learners themselves, their peers, and their tutors to assess the quality of the learner's performance, to give specific feedback, and to make suggestions for improvement. Methods: In Switzerland, four pedagogical universities and two medical faculties joined to initiate the development of a national infrastructure for Video Supported Learning. The goal was to have a system that is simple to use, has most steps automated, provides the videos over the Internet, and has a sophisticated access control. Together with SWITCH, the national IT‐Support‐Organisation for Swiss Universities, the program iVT (Individual Video Training) was developed by integrating two preexisting technologies. The first technology is SWITCHcast, a podcast system. With SWITCHcast, videos are automatically uploaded to a server as soon as the registration is over. There the videos are processed and converted to different formats. The second technology is the national Single Logon System AAI (Authentification and Authorization Infrastructure) that enables iVT to link each video with the corresponding learner. The learner starts the registration with his Single Logon. Thus, the video can unambiguously be assigned. Via his institution's Learning Management System (LMS), the learner can access his video and give access to his video to peers and tutors. Results: iVT is now used at all involved institutions. The system works flawlessly. In Bern, we use iVT for the communications skills training in the forth and sixth year. Since students meet with patient actors alone, iVT is also used to certify attendance. Students are encouraged to watch the videos of the interview and the feedback of the patient actor. The offer to discuss a video with a tutor was not used by the students. Discussion: We plan to expand the use of iVT by making peer assessment compulsory. To support this, annotation capabilities are currently added to iVT. We also want to use iVT in training of practical skills, again for self as well as for peer assessment. At present, we use iVT for quality control of patient actor's performance.
Resumo:
Mobile networks usage rapidly increased over the years, with great consequences in terms of performance requirements. In this paper, we propose mechanisms to use Information-Centric Networking to perform load balancing in mobile networks, providing content delivery over multiple radio technologies at the same time and thus efficiently using resources and improving the overall performance of content transfer. Meaningful results were obtained by comparing content transfer over single radio links with typical strategies to content transfer over multiple radio links with Information-Centric Networking load balancing. Results demonstrate that Information-Centric Networking load balancing increases the performance and efficiency of 3GPP Long Term Evolution mobile networks while greatly improving the network perceived quality for end users.
Resumo:
In this work, we will give a detailed tutorial instruction about how to use the Mobile Multi-Media Wireless Sensor Networks (M3WSN) simulation framework. The M3WSN framework has been published as a scientific paper in the 6th International Workshop on OMNeT++ (2013) [1]. M3WSN framework enables the multimedia transmission of real video se- quence. Therefore, a set of multimedia algorithms, protocols, and services can be evaluated by using QoE metrics. Moreover, key video-related information, such as frame types, GoP length and intra-frame dependency can be used for creating new assessment and optimization solutions. To support mobility, M3WSN utilizes different mobility traces to enable the understanding of how the network behaves under mobile situations. This tutorial will cover how to install and configure the M3WSN framework, setting and running the experiments, creating mobility and video traces, and how to evaluate the performance of different protocols. The tutorial will be given in an environment of Ubuntu 12.04 LTS and OMNeT++ 4.2.
Resumo:
In this work, we propose a novel network coding enabled NDN architecture for the delivery of scalable video. Our scheme utilizes network coding in order to address the problem that arises in the original NDN protocol, where optimal use of the bandwidth and caching resources necessitates the coordination of the forwarding decisions. To optimize the performance of the proposed network coding based NDN protocol and render it appropriate for transmission of scalable video, we devise a novel rate allocation algorithm that decides on the optimal rates of Interest messages sent by clients and intermediate nodes. This algorithm guarantees that the achieved flow of Data objects will maximize the average quality of the video delivered to the client population. To support the handling of Interest messages and Data objects when intermediate nodes perform network coding, we modify the standard NDN protocol and introduce the use of Bloom filters, which store efficiently additional information about the Interest messages and Data objects. The proposed architecture is evaluated for transmission of scalable video over PlanetLab topologies. The evaluation shows that the proposed scheme performs very close to the optimal performance
Resumo:
During the last decade wireless mobile communications have progressively become part of the people’s daily lives, leading users to expect to be “alwaysbest-connected” to the Internet, regardless of their location or time of day. This is indeed motivated by the fact that wireless access networks are increasingly ubiquitous, through different types of service providers, together with an outburst of thoroughly portable devices, namely laptops, tablets, mobile phones, among others. The “anytime and anywhere” connectivity criterion raises new challenges regarding the devices’ battery lifetime management, as energy becomes the most noteworthy restriction of the end-users’ satisfaction. This wireless access context has also stimulated the development of novel multimedia applications with high network demands, although lacking in energy-aware design. Therefore, the relationship between energy consumption and the quality of the multimedia applications perceived by end-users should be carefully investigated. This dissertation addresses energy-efficient multimedia communications in the IEEE 802.11 standard, which is the most widely used wireless access technology. It advances the literature by proposing a unique empirical assessment methodology and new power-saving algorithms, always bearing in mind the end-users’ feedback and evaluating quality perception. The new EViTEQ framework proposed in this thesis, for measuring video transmission quality and energy consumption simultaneously, in an integrated way, reveals the importance of having an empirical and high-accuracy methodology to assess the trade-off between quality and energy consumption, raised by the new end-users’ requirements. Extensive evaluations conducted with the EViTEQ framework revealed its flexibility and capability to accurately report both video transmission quality and energy consumption, as well as to be employed in rigorous investigations of network interface energy consumption patterns, regardless of the wireless access technology. Following the need to enhance the trade-off between energy consumption and application quality, this thesis proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA). By using the end-users’ feedback to establish a proper trade-off between energy consumption and application performance, OPAMA aims at enhancing the energy efficiency of end-users’ devices accessing the network through IEEE 802.11. OPAMA performance has been thoroughly analyzed within different scenarios and application types, including a simulation study and a real deployment in an Android testbed. When compared with the most popular standard power-saving mechanisms defined in the IEEE 802.11 standard, the obtained results revealed OPAMA’s capability to enhance energy efficiency, while keeping end-users’ Quality of Experience within the defined bounds. Furthermore, OPAMA was optimized to enable superior energy savings in multiple station environments, resulting in a new proposal called Enhanced Power Saving Mechanism for Multiple station Environments (OPAMA-EPS4ME). The results of this thesis highlight the relevance of having a highly accurate methodology to assess energy consumption and application quality when aiming to optimize the trade-off between energy and quality. Additionally, the obtained results based both on simulation and testbed evaluations, show clear benefits from employing userdriven power-saving techniques, such as OPAMA, instead of IEEE 802.11 standard power-saving approaches.
Resumo:
Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.
Resumo:
Purpose To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Methods Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Results Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. Conclusions The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.
Resumo:
The evolution of wireless access technologies and mobile devices, together with the constant demand for video services, has created new Human-Centric Multimedia Networking (HCMN) scenarios. However, HCMN poses several challenges for content creators and network providers to deliver multimedia data with an acceptable quality level based on the user experience. Moreover, human experience and context, as well as network information play an important role in adapting and optimizing video dissemination. In this paper, we discuss trends to provide video dissemination with Quality of Experience (QoE) support by integrating HCMN with cloud computing approaches. We identified five trends coming from such integration, namely Participatory Sensor Networks, Mobile Cloud Computing formation, QoE assessment, QoE management, and video or network adaptation.