57 resultados para Mixed Linear Model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Since the pioneering work of Jacobson and Suarez, microsurgery has steadily progressed and is now used in all surgical specialities, particularly in plastic surgery. Before performing clinical procedures it is necessary to learn the basic techniques in the laboratory. OBJECTIVE To assess an animal model, thereby circumventing the following issues: ethical rules, cost, anesthesia and training time. METHODS Between July 2012 and September 2012, 182 earthworms were used for 150 microsurgical trainings to simulate discrepancy microanastomoses. Training was undertaken over 10 weekly periods. Each training session included 15 simulations of microanastomoses performed using the Harashina technique (earthworm diameters >1.5 mm [n=5], between 1.0 mm and 1.5 mm [n=5], and <1.0 mm [n=5]). The technique is presented and documented. A linear model with main variable as the number of the week (as a numeric covariate) and the size of the animal (as a factor) was used to determine the trend in time of anastomosis over subsequent weeks as well as differences between the different size groups. RESULTS The linear model showed a significant trend (P<0.001) in time of anastomosis in the course of the training, as well as significant differences (P<0.001) between the groups of animal of different sizes. For diameter >1.5 mm, mean anastomosis time decreased from 19.6±1.9 min to 12.6±0.7 min between the first and last week of training. For training involving smaller diameters, the results showed a reduction in execution time of 36.1% (P<0.01) (diameter between 1.0 mm and 1.5 mm) and 40.6% (P<0.01) (diameter <1.0 mm) between the first and last weeks. The study demonstrates an improvement in the dexterity and speed of nodes' execution. CONCLUSION The earthworm appears to be a reliable experimental model for microsurgical training of discrepancy microanastomoses. Its numerous advantages, as discussed in the present report, show that this model of training will significantly grow and develop in the near future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabecular bone score (TBS) rests on the textural analysis of DXA to reflect the decay in trabecular structure characterising osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible as prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly due to an unrealistic set-up and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings was used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation (“full vertebra”), 2) via the classical endplate embedding (“vertebral body”) or 3) via a ball joint to induce anterior wedge failure (“vertebral section”). HR-pQCT scans acquired prior testing were used to simulate anterior-posterior DXA from which areal bone mineral density (aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were evaluated. Finally, the relation of aBMD and ISV with failure load (Fexp) and apparent failure stress (σexp) was assessed and their relative contribution to a multi-linear model was quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate with Fexp and σexp, except for the “vertebral body” case (r2 = 0.396, p = 0.028). Aside from the “vertebra section” set-up where it explained only 6.4% of σexp (p = 0.037), it brought no significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor surrogate for vertebral strength no matter the testing set-up, which supports the prior observations and raises a fortiori the question of the deterministic factors underlying the statistical relationship between TBS and vertebral fracture risk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: In equine laminitis, the deep digital flexor muscle (DDFM) appears to have increased muscle force, but evidence-based confirmation is lacking. OBJECTIVES: The purpose of this study was to test if the DDFM of laminitic equines has an increased muscle force detectable by needle electromyography interference pattern analysis (IPA). ANIMALS AND METHODS: The control group included six Royal Dutch Sport horses, three Shetland ponies and one Welsh pony [10 healthy, sound adults weighing 411 ± 217 kg (mean ± SD) and aged 10 ± 5 years]. The laminitic group included three Royal Dutch Sport horses, one Friesian, one Haflinger, one Icelandic horse, one Welsh pony, one miniature Appaloosa and six Shetland ponies (14 adults, weight 310 ± 178 kg, aged 13 ± 6 years) with acute/chronic laminitis. The electromyography IPA measurements included firing rate, turns/second (T), amplitude/turn (M) and M/T ratio. Statistical analysis used a general linear model with outcomes transformed to geometric means. RESULTS: The firing rate of the total laminitic group was higher than the total control group. This difference was smaller for the ponies compared to the horses; in the horses, the geometric mean difference of the laminitic group was 1.73 [geometric 95% confidence interval (CI) 1.29-2.32], and in the ponies this value was 1.09 (geometric 95% CI 0.82-1.45). CONCLUSION AND CLINICAL RELEVANCE: In human medicine, an increased firing rate is characteristic of increased muscle force. Thus, the increased firing rate of the DDFM in the context of laminitis suggests an elevated muscle force. However, this seems to be only a partial effect as in this study, the unchanged turns/second and amplitude/turn failed to prove the recruitment of larger motor units with larger amplitude motor unit potentials in laminitic equids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES Chewing efficiency may be evaluated using cohesive specimen, especially in elderly or dysphagic patients. The aim of this study was to evaluate three two-coloured chewing gums for a colour-mixing ability test and to validate a new purpose built software (ViewGum©). METHODS Dentate participants (dentate-group) and edentulous patients with mandibular two-implant overdentures (IOD-group) were recruited. First, the dentate-group chewed three different types of two-coloured gum (gum1-gum3) for 5, 10, 20, 30 and 50 chewing cycles. Subsequently the number of chewing cycles with the highest intra- and inter-rater agreement was determined visually by applying a scale (SA) and opto-electronically (ViewGum©, Bland-Altman analysis). The ViewGum© software determines semi-automatically the variance of hue (VOH); inadequate mixing presents with larger VOH than complete mixing. Secondly, the dentate-group and the IOD-group were compared. RESULTS The dentate-group comprised 20 participants (10 female, 30.3±6.7 years); the IOD-group 15 participants (10 female, 74.6±8.3 years). Intra-rater and inter-rater agreement (SA) was very high at 20 chewing cycles (95.00-98.75%). Gums 1-3 showed different colour-mixing characteristics as a function of chewing cycles, gum1 showed a logarithmic association; gum2 and gum3 demonstrated more linear behaviours. However, the number of chewing cycles could be predicted in all specimens from VOH (all p<0.0001, mixed linear regression models). Both analyses proved discriminative to the dental state. CONCLUSION ViewGum© proved to be a reliable and discriminative tool to opto-electronically assess chewing efficiency, given an elastic specimen is chewed for 20 cycles and could be recommended for the evaluation of chewing efficiency in a clinical and research setting. CLINICAL SIGNIFICANCE Chewing is a complex function of the oro-facial structures and the central nervous system. The application of the proposed assessments of the chewing function in geriatrics or special care dentistry could help visualising oro-functional or dental comorbidities in dysphagic patients or those suffering from protein-energy malnutrition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Respiratory tract infections and subsequent airway inflammation occur early in the life of infants with cystic fibrosis. However, detailed information about the microbial composition of the respiratory tract in infants with this disorder is scarce. We aimed to undertake longitudinal in-depth characterisation of the upper respiratory tract microbiota in infants with cystic fibrosis during the first year of life. METHODS We did this prospective cohort study at seven cystic fibrosis centres in Switzerland. Between Feb 1, 2011, and May 31, 2014, we enrolled 30 infants with a diagnosis of cystic fibrosis. Microbiota characterisation was done with 16S rRNA gene pyrosequencing and oligotyping of nasal swabs collected every 2 weeks from the infants with cystic fibrosis. We compared these data with data for an age-matched cohort of 47 healthy infants. We additionally investigated the effect of antibiotic treatment on the microbiota of infants with cystic fibrosis. Statistical methods included regression analyses with a multivariable multilevel linear model with random effects to correct for clustering on the individual level. FINDINGS We analysed 461 nasal swabs taken from the infants with cystic fibrosis; the cohort of healthy infants comprised 872 samples. The microbiota of infants with cystic fibrosis differed compositionally from that of healthy infants (p=0·001). This difference was also found in exclusively antibiotic-naive samples (p=0·001). The disordering was mainly, but not solely, due to an overall increase in the mean relative abundance of Staphylococcaceae in infants with cystic fibrosis compared with healthy infants (multivariable linear regression model stratified by age and adjusted for season; second month: coefficient 16·2 [95% CI 0·6-31·9]; p=0·04; third month: 17·9 [3·3-32·5]; p=0·02; fourth month: 21·1 [7·8-34·3]; p=0·002). Oligotyping analysis enabled differentiation between Staphylococcus aureus and coagulase-negative Staphylococci. Whereas the analysis showed a decrease in S aureus at and after antibiotic treatment, coagulase-negative Staphylococci increased. INTERPRETATION Our study describes compositional differences in the microbiota of infants with cystic fibrosis compared with healthy controls, and disordering of the microbiota on antibiotic administration. Besides S aureus, coagulase-negative Staphylococci also contributed to the disordering identified in these infants. These findings are clinically important in view of the crucial role that bacterial pathogens have in the disease progression of cystic fibrosis in early life. Our findings could be used to inform future studies of the effect of antibiotic treatment on the microbiota in infants with cystic fibrosis, and could assist in the prevention of early disease progression in infants with this disorder. FUNDING Swiss National Science Foundation, Fondation Botnar, the Swiss Society for Cystic Fibrosis, and the Swiss Lung Association Bern.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pspline uses xtmixed to fit a penalized spline regression and plots the smoothed function. Additional covariates can be specified to adjust the smooth and plot partial residuals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To propose the determination of the macromolecular baseline (MMBL) in clinical 1H MR spectra based on T(1) and T(2) differentiation using 2D fitting in FiTAID, a general Fitting Tool for Arrays of Interrelated Datasets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.