39 resultados para Mineralogical fractionation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a barium (Ba) isotope fractionation study of marine biogenic carbonates (aragonitic corals). The major aim is to provide first constraints on the Ba isotope fractionation between modern surface sea water and coral skele- ton. Mediterranean surface sea water was found to be enriched in the heavy Ba isotopes compared to previously reported values for marine open ocean authi- genic and terrestrial minerals. In aquarium experiments with a continuous sup- ply of Mediterranean surface water, the Ba isotopic composition of the bulk sample originating from cultured, aragonitic scleractinian corals (d137/134Ba between +0.16 +/- 0.12permil and +0.41 +/-0.12permil) were isotopically identical or lighter than that of the ambient Mediterranean surface sea water (d137/134Ba = +0.42 +/- 0.07permil, 2SD), which corresponds to an empirical maximum value of Ba isotope fractionation of D137/134Bacoral-seawater = -0.26 +/- 0.14permil at 25°C. This maximum Ba isotope fractionation is close and identical in direction to previous results from inorganic precipitation experiments with aragonite- structured pure BaCO3 (witherite). The variability in measured Ba concentrations of the cultured corals is at odds with a uniform distribution coefficient, DBa/Ca, thus indicating stronger vital effects on isotope than element discrimination. This observation supports the hypothesis that the Ba isotopic compositions of these corals do not result from simple equilibrium between the skeleton and the bulk sea water. Complementary coral samples from natural settings (tropical shallow-water corals from the Bahamas and Florida and cold- water corals from the Norwegian continental shelf) show an even wider range in d137/134Ba values (+0.14 +/- 0.08permil and +0.77 +/- 0.11permil), most probably due to additional spatial and/or temporal sea water heterogeneity, as indicated by recent publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. The main goal of this work is to study element ratios that are important for the formation of planets of different masses. Methods. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. Results. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggest that low-mass planets are more prevalent around stars with high [Mg/Si]. Conclusions. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition. The results also show that abundance ratios may be a very relevant issue for our understanding of planet formation and evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in Central Switzerland. Comparisons between calculated equilibrium isotope values, using the fractionation equation of Friedman and O’Neil, (1977) and measured oxygen isotope ratios of calcite in the sediment-traps reveal that oxygen isotopic values of autochthonous calcite (δ18O) are in isotopic equilibrium with ambient water during most of the spring and summer, when the majority of the calcite precipitates. In contrast, small amounts of calcite precipitated in early-spring and again in late-autumn are isotopically depleted in 18O relative to the calculated equilibrium values, by as much as 0.8‰. This seasonally occurring apparent isotopic nonequilibrium is associated with times of high phosphorous concentrations, elevated pH (∼8.6) and increased [CO32−] (∼50 μmol/l) in the surface waters. The resulting weighted average δ18O value for the studied period is −9.6‰, compared with a calculated equilibrium δ18O value of −9.4‰. These data convincingly demonstrate that δ18O of calcite are, for the most part, a very reliable proxy for temperature and δ18O of the water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass- dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 C and 25 C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in d137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba/D134Ba = (m134/m137)^b). Values of b extracted from the transport model were in the range of 0.010–0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (a = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation pro- cesses, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 oC in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04 ‰, 2sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (~7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.