35 resultados para Migration inhibitory factor
Resumo:
Introduction: Alcohol-dependency is a common disease with many negative consequences in the daily life. A typical symptom of alcoholic-patients is the persistent and uncontrollable desire to consume alcohol. Inspite of different treatments, alcohol-dependency has a relapse rate of about 85%. This high rate is facilitated by a dysfunction of cognitive control-processes. In order to understand this disease sustaining factor, the present study investigated the neurophysiological correlates of inhibition of alcoholic-patients in a neutral as well as an alcohol-related context. Methods: A total of 18 participants, (9 alcohol-dependent-patients (age range: 27-62 years), 9 healthy controls (age range: 29-60 years)) have been measured with functional magnetic resonance imaging while they participated in an alcohol-specific Go/NoGo-Task. Neurophysiological correlates of inhibition in an alcohol-related as well as a neutral context were compared in both groups. Results: When comparing correct stop-trials in alcohol-related to neutral context, only alcohol-dependent patients showed significant hyperactivation in frontal regions (superior and medial gyrus frontalis, anterior gyrus cinguli, gyrus paracentralis and the gyrus praecentralis). No significant differences were found in any of the behavioral analyses. Discussion: These preliminary results thus indicate that successful inhibition in a drug-related context demands additional resources in patients. Especially the hyperactivation of the anterior gyrus cinguli might be important because of its involvement in decision-processes. In the absent of deficits in behavioral data, this suggests that alcohol-dependent patients need more neuronal activity to achieve the same performance-level like healthy controls.
Resumo:
Trade, investment and migration are strongly intertwined, being three key factors in international production. Yet, law and regulation of the three has remained highly fragmented. Trade is regulated by the WTO on the multilateral level, and through preferential trade agreements on the regional and bilateral levels – it is fragmented and complex in its own right. Investment, on the other hand, is mainly regulated through bilateral investment treaties with no strong links to the regulation of trade or migration. And, finally, migration is regulated by a web of different international, regional and bilateral agreements which focus on a variety of different aspects of migration ranging from humanitarian to economic. The problems of institutional fragmentation in international law are well known. There is no organizational forum for coherent strategy-making on the multilateral level covering all three areas. Normative regulations may thus contradict each other. Trade regulation may bring about liberalization of access for service providers, but eventually faces problems in recruiting the best people from abroad. Investors may withdraw investment without being held liable for disruptions to labour and to the livelihood and infrastructure of towns and communities affected by disinvestment. Finally, migration policies do not seem to have a significant impact as long as trade policies and investment policies are not working in a way that is conducive to reducing migration pressure, as trade and investment are simply more powerful on the regulatory level than migration. This chapter addresses the question as to how fragmentation of the three fields could be reme-died and greater coherence between these three areas of factor allocation in international economic relations and law could be achieved. It shows that migration regulation on the international level is lagging behind that on trade and investment. Stronger coordination and consideration of migration in trade and investment policy, and stronger international cooperation in migration, will provide the foundations for a coherent international architecture in the field.
Resumo:
BACKGROUND Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. QUESTIONS/PURPOSES In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. METHODS L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. RESULTS More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF occurred between 3 and 7 days and of IL-1β between Days 1 and 7. IGF-1 and PDGF-AB were released until Day 1 in L-PRP and blood clot, in contrast to sustained release over the first 3 days in L-PRF. The strongest migration of MSC occurred in response to L-PRF, and more HUVEC migration was seen in L-PRF and blood clot compared with L-PRP. TGF-β1 correlated with initial platelet counts in L-PRF (Pearson r = 0.66, p = 0.0273) and initial leukocyte counts in L-PRP (Pearson r = 0.83, p = 0.0016). A positive correlation of IL-1β on migration of MSC and HUVEC was revealed (Pearson r = 0.16, p = 0.0208; Pearson r = 0.31, p < 0.001). CONCLUSIONS In comparison to L-PRP, L-PRF had higher amounts of released TGF-β1, a long-term release of growth factors, and stronger induction of cell migration. Future preclinical studies should confirm these data in a defined injury model. CLINICAL RELEVANCE By characterizing the biologic properties of different platelet concentrates in vitro, we may gain a better understanding of their clinical effects and develop guidelines for specific future applications.
Resumo:
INTRODUCTION During dentinogenesis, growth factors become entrapped in the dentin matrix that can later be released by demineralization. Their effect on pulpal stem cell migration, proliferation, and differentiation could be beneficial for regenerative endodontic therapies. However, precondition for success, as for conventional root canal treatment, will be sufficient disinfection of the root canal system. Various irrigation solutions and intracanal dressings are available for clinical use. The aim of this study was 2-fold: to identify a demineralizing solution suitable for growth factor release directly from dentin and to evaluate whether commonly used disinfectants for endodontic treatment will compromise this effect. METHODS Dentin disks were prepared from extracted human teeth and treated with EDTA or citric acid at different concentrations or pH for different exposure periods. The amount of transforming growth factor-β1 (TGF-β1), fibroblast growth factor 2, and vascular endothelial growth factor were quantified via enzyme-linked immunosorbent assay and visualized by gold labeling. Subsequently, different irrigation solutions (5.25% sodium hypochloride, 0.12% chlorhexidine digluconate) and intracanal dressings (corticoid-antibiotic paste, calcium hydroxide: water-based and oil-based, triple antibiotic paste, chlorhexidine gel) were tested, and the release of TGF-β1 was measured after a subsequent conditioning step with EDTA. RESULTS Conditioning with 10% EDTA at pH 7 rendered the highest amounts of TGF-β1 among all test solutions. Fibroblast growth factor 2 and vascular endothelial growth factor were detected after EDTA conditioning at minute concentrations. Irrigation with chlorhexidine before EDTA conditioning increased TGF-β1 release; sodium hypochloride had the opposite effect. All tested intracanal dressings interfered with TGF-β1 release except water-based calcium hydroxide. CONCLUSIONS Growth factors can be released directly from dentin via EDTA conditioning. The use of disinfecting solutions or medicaments can amplify or attenuate this effect.
Resumo:
Coagulation factor XII (FXII) inhibitors are of interest for the study of the protease in the intrinsic coagulation pathway, for the suppression of contact activation in blood coagulation assays, and they have potential application in antithrombotic therapy. However, synthetic FXII inhibitors developed to date have weak binding affinity and/or poor selectivity. Herein, we developed a peptide macrocycle that inhibits activated FXII (FXIIa) with an inhibitory constant Ki of 22 nM and a selectivity of >2000-fold over other proteases. Sequence and structure analysis revealed that one of the two macrocyclic rings of the in vitro evolved peptide mimics the combining loop of corn trypsin inhibitor, a natural protein-based inhibitor of FXIIa. The synthetic inhibitor blocked intrinsic coagulation initiation without affecting extrinsic coagulation. Furthermore, the peptide macrocycle efficiently suppressed plasma coagulation triggered by contact of blood with sample tubes and allowed specific investigation of tissue factor initiated coagulation.