33 resultados para Mendelssohn, Moses
Resumo:
Introduction. Prospective Memory (PM), defined as the ability to remember to perform intended activities at some point in the future (Kliegel & Jäger, 2007), is crucial to succeed in everyday life. PM seems to increase over the childhood years (Zimmermann & Meier, 2006), but yet little is known about PM competences in children in general, but also about factors that influence its development. Currently, a number of studies has focused on factors that might influence PM performance, with EF being potentially influencing mechanisms (Ford, Driscoll, Shum & Macaulay, 2012; Mahy & Moses, 2011). Also metacognitive processes (MC: monitoring and control) are assumed to be involved while learning or optimizing one’s performance (Krebs & Roebers, 2010; 2012; Roebers, Schmid, & Roderer, 2009). Yet, the empirical relation between PM, EF and MC remains rather unclear. We intend to examine relations and explain individual differences in PM performance. Method. An empirical cross-sectional study on 120 2nd graders will be presented. Participants completed six EF tasks (a Stroop, two Updating Tasks, two Shifting Tasks, a Flanker Task), a computerised event-based PM Task and a MC spelling task. Children were tested individually in two sessions of 30 minutes each. Each of the three EF components defined by Miyake, Friedman, Emerson, Witzki & Howerter (2002) was represented by two variables. PM performance was represented by PM accuracy. Metacognitive processes (control, monitoring) were represented separately. Results. Preliminary analyses (SEM) indicate a substantial association between EF (updating, inhibition) and PM. Further, MC seems to be significantly related only to EF. We will explore whether metacognitive monitoring is related to PM monitoring (Roebers, 2002; Mantylä, 2007). As to EF and MC, we expect the two domains to be empirically well distinguishable and nevertheless substantially interrelated. Discussion. The results are discussed on a broader and interindividual level.
Resumo:
In der Antike haben jüdische Autoren in ganz unterschiedlichen literarischen Gefäßen die Tora mit häufig bemerkenswerter inhaltlicher Freiheit für sich gedeutet und weiter gesponnen. Wie auf einer Drehbühne konnten biblische Texte immer wieder neu inszeniert werden - ohne, dass der Urtext deswegen in Frage gestellt werden musste. Die Tora war die Vorlage für unterschiedlichste Deutungen der eigenen Lebenswelten. René Bloch untersucht solche literarischen Imaginationen und deren Entstehungskontexte. Die in diesem Band versammelten Texte sind aus den Tria Corda-Vorlesungen an der Universität Jena hervorgegangen. Vier Texte aus der jüdischen Diaspora und Palästina stehen im Zentrum: der jüdisch-hellenistische Liebesroman Joseph und Aseneth, die Moses-Biographie des Philon von Alexandrien, das Buch der Biblischen Altertümer des Pseudo-Philo und schließlich - über die Antike hinaus, aber eng mit der Antike verbunden - der Josippon, eine hebräische Neufassung der biblischen Geschichte und des jüdisch-römischen Kriegs aus dem Italien des 10. Jahrhunderts. Die literarischen Genres der diskutierten Texte reichen vom Roman über das religionsphilosophische Traktat bis zur Geschichtsschreibung. Alle vier Autoren nehmen biblische Figuren auf und schreiben deren Geschichten um und weiter. Alle vier Texte sind stark geprägt von ihrem zeitlichen und geographischen Entstehungskontext und spiegeln ein komplexes Verhältnis zur nichtjüdischen Umwelt wider: Zum einen stehen sie für ein authentisches, teils gar wegweisendes Judentum ein. Zum andern sind sie aber auch um Verbindungen mit der Mehrheitsgesellschaft bemüht.
Resumo:
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T eq up to 2,000 K, to those of a few Earth masses, with T eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.