47 resultados para Memory and learning
Resumo:
High precision in motor skill performance, in both sport and other domains (e.g. surgery and aviation), requires the efficient coupling of perceptual inputs (e.g. vision) and motor actions. A particular gaze strategy, which has received much attention within the literature, has been shown to predict both inter- (expert vs. novice) and intra-individual (successful vs. unsuccessful) motor performance (see Vine et al., 2014). Vickers (1996) labelled this phenomenon the quiet eye (QE) which is defined as the final fixation before the initiation of the crucial phase of movement. While the positive influence of a long QE on accuracy has been revealed in a range of different motor skills, there is a growing number of studies suggesting that the relationship between QE and motor performance is not entirely monotonic. This raises interesting questions regarding the QE’s purview, and the theoretical approaches explaining its functionality. This talk aims to present an overview of the issues described above, and to discuss contemporary research and experimental approaches to examining the QE phenomenon. In the first part of the talk Dr. Vine will provide a brief and critical review of the literature, highlighting recent empirical advancements and potential directions for future research. In the second part, Dr. Klostermann will communicate three different theoretical approaches to explain the relationship between QE and motor performance. Drawing upon aspects of all three of these theoretical approaches, a functional inhibition role for the QE (related to movement parameterisation) will be proposed.
Resumo:
It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases.Molecular Psychiatry advance online publication, 8 December 2015; doi:10.1038/mp.2015.174.
Resumo:
Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex.
Resumo:
Themood-congruity effect refers to facilitated processing of information when the affective valence of this information is congruent with the subject’s mood. In this paper we argue that mood may be a sufficient but not a necessary condition to produce the mood-congruity effect of selective learning. Two experiments are presented in which subjects learned lists of words with neutral, positive, and negative affective valences. In the learning task the subjects were instructed to behave as if they were depressed or happy. The mood-congruity effect was indeed obtained. The effect was stronger with subjects who “predicted” the relationship between mood and affective word valence than with subjects who were unaware of this relationship. The results are not simply attributed to task demands, but are interpreted in terms of a model of cognitive processes and people’s knowledge about mood states.
Resumo:
There is conflicting evidence whether Parkinson's disease (PD) is associated with impaired recognition memory and which of its underlying processes, namely recollection and familiarity, is more affected by the disease. The present study explored the contribution of recollection and familiarity to verbal recognition memory performance in 14 nondemented PD patients and a healthy control group with two different methods: (i) the word-frequency mirror effect, and (ii) Remember/Know judgments. Overall, recognition memory of patients was intact. The word-frequency mirror effect was observed both in patients and controls: Hit rates were higher and false alarm rates were lower for low-frequency compared to high-frequency words. However, Remember/Know judgments indicated normal recollection, but impaired familiarity. Our findings suggest that mild to moderate PD patients are selectively impaired at familiarity whereas recollection and overall recognition memory are intact.
Resumo:
Bilingual education programs implicitly assume that the acquired knowledge is represented in a language-independent way. This assumption, however, stands in strong contrast to research findings showing that information may be represented in a way closely tied to the specific language of instruction and learning. The present study aims to examine whether and to which extent cognitive costs appear during arithmetic learning when language of instruction and language of retrieving differ. Thirty-nine high school students participating in a bilingual education program underwent a four-day training on multiplication and subtraction problems in one language (German or French), followed by a test session in which they had to solve trained as well as untrained problems in both languages. We found that cognitive costs related to language switching appeared for both arithmetic operations. Implications of our findings are discussed with respect to bilingual education as well as to cognitive mechanisms underlying different arithmetic operations.
Resumo:
Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.
Resumo:
Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.
Resumo:
Objective: There is convincing evidence that phonological, orthographic and semantic processes influence children’s ability to learn to read and spell words. So far only a few studies investigated the influence of implicit learning in literacy skills. Children are sensitive to the statistics of their learning environment. By frequent reading they acquire implicit knowledge about the frequency of letter patterns in written words, and they use this knowledge during reading and spelling. Additionally, semantic connections facilitate to storing of words in memory. Thus, the aim of the intervention study was to implement a word-picture training which is based on statistical and semantic learning. Furthermore, we aimed at examining the training effects in reading and spelling in comparison to an auditory-visual matching training and a working memory training program. Participants and Methods: One hundred and thirty-two children aged between 8 and 11 years participated in training in three weekly session of 12 minutes over 8 weeks, and completed other assessments of reading, spelling, working memory and intelligence before and after training. Results: Results revealed in general that the word-picture training and the auditory-visual matching training led to substantial gains in reading and spelling performance in comparison to the working-memory training. Although both children with and without learning difficulties profited in their reading and spelling after the word-picture training, the training program led to differential effects for the two groups. After the word-picture training on the one hand, children with learning difficulties profited more in spelling as children without learning difficulties, on the other hand, children without learning difficulties benefit more in word comprehension. Conclusions: These findings highlight the need for frequent reading trainings with semantic connections in order to support the acquisition of literacy skills.
Resumo:
Aims: To examine the effect of memory strategy training on different aspects of memory in children born very preterm and to determine whether there is a generalization of the training effect to non-trained functions. The influence of individual factors such as age and performance level on the training success will be determined. Methods: In a randomized, controlled and blinded clinical trial, 46 children born very preterm (aged 7-12 years) were allocated to a memory strategy training (MEMO-Training, n=23) or a control group (n=23). Neuropsychological assessment was performed before, immediately after the training and at a 6-month follow-up. In the MEMO-Training, five different memory strategies were introduced and practiced in a one-to-one setting (4 hour-long training sessions over 4 weeks, 20 homework sessions). Results: A significant training-related improvement occurred in trained aspects of memory (verbal and visual learning and recall, verbal working memory) and in non-trained functions (inhibition, mental arithmetic). No performance increase was observed in the control group. At six months follow-up, there was a significant training-related improvement of visual working memory. Age and performance level before the training predicted the training success significantly. Conclusion: Teaching memory strategies is an effective way to improve different aspects of memory but also non-trained functions such as inhibition and mental arithmetic in children born very preterm. Age and performance level influence the success of memory strategy training. These results highlight the importance of teaching children memory strategies to reduce scholastic problems.
Resumo:
Two factors that have been suggested as key in explaining individual differences in fluid intelligence are working memory and sensory discrimination ability. A latent variable approach was used to explore the relative contributions of these two variables to individual differences in fluid intelligence in middle to late childhood. A sample of 263 children aged 7–12 years was examined. Correlational analyses showed that general discrimination ability (GDA)and working memory (WM) were related to each other and to fluid intelligence. Structural equation modeling showed that within both younger and older age groups and the sample as a whole, the relation between GDA and fluid intelligence could be accounted for by WM. While WM was able to predict variance in fluid intelligence above and beyond GDA, GDA was not able to explain significant amounts of variance in fluid intelligence, either in the whole sample or within the younger or older age group. We concluded that compared to GDA, WM should be considered the better predictor of individual differences in fluid intelligence in childhood. WM and fluid intelligence, while not being separable in middle childhood, develop at different rates, becoming more separable with age.
Resumo:
This study investigated the empirical differentiation of prospective memory, executive functions, and metacognition and their structural relationships in 119 elementary school children (M = 95 months, SD = 4.8 months). These cognitive abilities share many characteristics on the theoretical level and are all highly relevant in many everyday contexts when intentions must be executed. Nevertheless, their empirical relationships have not been examined on the latent level, although an empirical approach would contribute to our knowledge concerning the differentiation of cognitive abilities during childhood. We administered a computerized event-based prospective memory task, three executive function tasks (updating, inhibition, shifting), and a metacognitive control task in the context of spelling. Confirmatory factor analysis revealed that the three cognitive abilities are already empirically differentiable in young elementary school children. At the same time, prospective memory and executive functions were found to be strongly related, and there was also a close link between prospective memory and metacognitive control. Furthermore, executive functions and metacognitive control were marginally significantly related. The findings are discussed within a framework of developmental differentiation and conceptual similarities and differences.
Resumo:
Studies revealing transfer effects of working memory (WM) training on non-trained cognitive performance of children hold promising implications for scholastic learning. However, the results of existing training studies are not consistent and provoke debates about the potential and limitations of cognitive enhancement. To examine the influence of individual differences on training outcomes is a promising approach for finding causes for such inconsistencies. In this study, we implemented WM training in an elementary school setting. The aim was to investigate near and far transfer effects on cognitive abilities and academic achievement and to examine the moderating effects of a dispositional and a regulative temperament factor, neuroticism and effortful control. Ninetynine second-graders were randomly assigned to 20 sessions of computer-based adaptiveWMtraining, computer-based reading training, or a no-contact control group. For the WM training group, our analyses reveal near transfer on a visual WM task, far transfer on a vocabulary task as a proxy for crystallized intelligence, and increased academic achievement in reading and math by trend. Considering individual differences in temperament, we found that effortful control predicts larger training mean and gain scores and that there is a moderation effect of both temperament factors on post-training improvement: WM training condition predicted higher post-training gains compared to both control conditions only in children with high effortful control or low neuroticism. Our results suggest that a short but intensive WM training program can enhance cognitive abilities in children, but that sufficient selfregulative abilities and emotional stability are necessary for WM training to be effective.