54 resultados para Mapping the Building and Construction Product System
Resumo:
The objective of this study was to use advanced MR techniques to evaluate and compare cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) in the patella and medial femoral condyle (MFC). Thirty-four patients treated with MACT underwent 3-T MRI of the knee. Patients were treated on either patella (n = 17) or MFC (n = 17) cartilage and were matched by age and postoperative interval. For morphological evaluation, the MR observation of cartilage repair tissue (MOCART) score was used, with a 3D-True-FISP sequence. For biochemical assessment, T2 mapping was prepared by using a multiecho spin-echo approach with particular attention to the cartilage zonal structure. Statistical evaluation was done by analyses of variance. The MOCART score showed no significant differences between the patella and MFC (p > or = 0.05). With regard to biochemical T2 relaxation, higher T2 values were found throughout the MFC (p < 0.05). The zonal increase in T2 values from deep to superficial was significant for control cartilage (p < 0.001) and cartilage repair tissue (p < 0.05), with an earlier onset in the repair tissue of the patella. The assessment of cartilage repair tissue of the patella and MFC afforded comparable morphological results, whereas biochemical T2 values showed differences, possibly due to dissimilar biomechanical loading conditions.
Resumo:
Epidemiologic studies have shown correlations between morbidity and particles < or = 2.5 microm generated from pollution processes and manufactured nanoparticles. Thereby nanoparticles seem to play a specific role. The interaction of particles with the lung, the main pathway of undesired particle uptake, is poorly understood. In most studies investigating these interactions in vitro, particle deposition differs greatly from the in vivo situation, causing controversial results. We present a nanoparticle deposition chamber to expose lung cells mimicking closely the particle deposition conditions in the lung. In this new deposition chamber, particles are deposited very efficiently, reproducibly, and uniformly onto the cell culture, a key aspect if cell responses are quantified in respect to the deposited particle number. In situ analyses of the lung cells, e.g., the ciliary beat frequency, indicative of the defense capability of the cells, are complemented by off-line biochemical, physiological, and morphological cell analyses.
Resumo:
AIM: The aim of this study was to assess the marginal fit of crowns on the Straumann (ITI) Dental Implant System with special consideration of different casting dental materials. MATERIAL AND METHODS: Sixty porcelain-fused-to-metal crowns were fabricated: 18 crowns on standard cone abutments with an impression cylinder, partially prefabricated analogs, no coping and screw-retained (A); 18 crowns on solid abutments without an impression device, no analogs, no coping and cemented (B); and 18 crowns on solid abutments using an impression transfer cap, an analog with a shoulder, no coping and cemented (C). In each group, six crowns were made on epoxy mastercasts (Bluestar), six on synthetic plaster (Moldasynt) and six on super hard stone (Fujirock). Six additional crowns were fabricated with the transversal screw retention system onto the Octa system with impression transfer caps, metal analogs, gold copings and screw-retained (D). Impregum was used as impression material. Crowns of B and C were cemented with KetacCem. Crowns of A and D were fixed with an occlusal screw torqued at 15 N cm. Crowns were embedded, cut and polished. Under a light microscope using a magnification of x 100, the distance between the crown margin (CM) and the shoulder (marginal gap, MG) and the distance between the CM and the end of the shoulder (crown length, CL) was measured. RESULTS: MGs were 15.4+/-13.2 microm (A), 21.2+/-23.1 microm (B), 11+/-12.1 microm (C) and 10.4+/-9.3 microm (D). No statistically significantly differences using either of the casting materials were observed. CLs were -21.3+/-24.8 microm (A), 3+/-28.9 microm (B), 0.5+/-22 microm (C) and 0.1+/-15.8 microm (D). Crowns were shorter on synthetic casting materials compared with stone casts (P<0.005). CONCLUSIONS: CMs fit precisely with both cemented and screw-retained versions as well as when using no, partial or full analogs.
Resumo:
OBJECTIVES: In fetal ultrasound imaging, teaching and experience are of paramount importance to improve prenatal detection rates of fetal abnormalities. Yet both aspects depend on exposure to normal and, in particular, abnormal 'specimens'. We aimed to generate a number of simple virtual reality (VR) objects of the fetal central nervous system for use as educational tools. METHODS: We applied a recently proposed algorithm for the generation of fetal VR object movies to the normal and abnormal fetal brain and spine. Interactive VR object movies were generated from ultrasound volume data from normal fetuses and fetuses with typical brain or spine anomalies. Pathognomonic still images from all object movies were selected and annotated to enable recognition of these features in the object movies. RESULTS: Forty-six virtual reality object movies from 22 fetuses (two with normal and 20 with abnormal brains) were generated in an interactive display format (QuickTime) and key images were annotated. The resulting .mov files are available for download from the website of this journal. CONCLUSIONS: VR object movies can be generated from educational ultrasound volume datasets, and may prove useful for teaching and learning normal and abnormal fetal anatomy.
Resumo:
The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein.
Resumo:
Coat color and pattern variations in domestic animals are frequently inherited as simple monogenic traits, but a number are known to have a complex genetic basis. While the analysis of complex trait data remains a challenge in all species, we can use the reduced haplotypic diversity in domestic animal populations to gain insight into the genomic interactions underlying complex phenotypes. White face and leg markings are examples of complex traits in horses where little is known of the underlying genetics. In this study, Franches-Montagnes (FM) horses were scored for the occurrence of white facial and leg markings using a standardized scoring system. A genome-wide association study (GWAS) was performed for several white patterning traits in 1,077 FM horses. Seven quantitative trait loci (QTL) affecting the white marking score with p-values p≤10(-4) were identified. Three loci, MC1R and the known white spotting genes, KIT and MITF, were identified as the major loci underlying the extent of white patterning in this breed. Together, the seven loci explain 54% of the genetic variance in total white marking score, while MITF and KIT alone account for 26%. Although MITF and KIT are the major loci controlling white patterning, their influence varies according to the basic coat color of the horse and the specific body location of the white patterning. Fine mapping across the MITF and KIT loci was used to characterize haplotypes present. Phylogenetic relationships among haplotypes were calculated to assess their selective and evolutionary influences on the extent of white patterning. This novel approach shows that KIT and MITF act in an additive manner and that accumulating mutations at these loci progressively increase the extent of white markings.
Resumo:
Global investment in Sustainable Land Management (SLM) has been substantial, but knowledge gaps remain. Overviews of where land degradation (LD) is taking place and how land users are addressing the problem using SLM are still lacking for most individual countries and regions. Relevant maps focus more on LD than SLM, and they have been compiled using different methods. This makes it impossible to compare the benefits of SLM interventions and prevents informed decision-making on how best to invest in land. To fill this knowledge gap, a standardised mapping method has been collaboratively developed by the World Overview of Conservation Approaches and Technologies (WOCAT), FAO’s Land Degradation Assessment in Drylands (LADA) project, and the EU’s Mitigating Desertification and Remediating Degraded Land (DESIRE) project. The method generates information on the distribution and characteristics of LD and SLM activities and can be applied at the village, national, or regional level. It is based on participatory expert assessment, documents, and surveys. These data sources are spatially displayed across a land-use systems base map. By enabling mapping of the DPSIR framework (Driving Forces-Pressures-State-Impacts-Responses) for degradation and conservation, the method provides key information for decision-making. It may also be used to monitor LD and conservation following project implementation. This contribution explains the mapping method, highlighting findings made at different levels (national and local) in South Africa and the Mediterranean region. Keywords: Mapping, Decision Support, Land Degradation, Sustainable Land Management, Ecosystem Services, Participatory Expert Assessment
Resumo:
In terms of changing flow and sediment regimes of rivers, dams are often regarded as the most dominant form of human impact on fluvial systems. Dams can decrease the flux of water and sediments leading to channel changes such as upstream aggradation and downstream degradation. The opposite effects occur when dams are removed. Channel degradation often requires further intervention in terms of river bed and bank protection works. The situation evolves more complex in river systems that are impacted by a series of dams due to feedback processes between the different system compartments. A number of studies have recently investigated geomorphic systems using connectivity approaches to improve the understanding of geomorphic system response to change. This paper presents a case study investigating the impact of dam construction, dam removal and dam-related river bed and bank protection measures on the sediment connectivity and channel morphology of the Fugnitz and the Kaja Rivers using a combination of DEM analyses, field surveys and landscape evolution modelling. For both river systems the results revealed low sediment connectivity accompanied by a fine river bed sediment facies in river sections upstream of active dams and of removed dams with protection measures. Contrarily, high sediment connectivity which was accompanied by a coarse river bed sediment facies was observed in river sections either located downstream of active dams or of removed dams with upstream protection. In terms of channel changes, significant channel degradation was examined at locations downstream of active dams and of removed dams. Channel bed and bank protection measures prevent erosion and channel slope recovery after dam removal. Landscape evolution modeling revealed a complex geomorphic response to dam construction and dam removal as sediment output rates and therefore geomorphic processes have been shown to act in a non-linear manner. These insights are deemed to have major implications for river management and conservation, as quality and state of riverine habitats are determined by channel morphology and river bed sediment composition.