64 resultados para Map collections
Resumo:
Vierbändiger, gedruckter Katalog zur Kartensammlung Ryhiner. Die Kartensammlung Ryhiner zählt zu den wertvollsten und bedeutendstenden der Welt. Sie umfasst ca. 16'000 Landkarten, Pläne und Ansichten aus dem 16. bis frühen 19. Jahrhundert, wobei die Bestände den ganzen Erdball abdecken. Zusammen mit den 20'000 Manuskriptkarten des Staatsarchivs verfügt Bern damit über ein weltweites geographisches Gedächtnis. Karto-bibliographischer Katalog der Sammlung Ryhiner in vier Bänden mit 1786 Seiten und 16258 Katalognummern (ohne Illustrationen).
Resumo:
BACKGROUND Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. METHODS Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. RESULTS Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. CONCLUSION The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.
Resumo:
Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.
Resumo:
Recent research suggests that great apes are less vulnerable to cohesion violations than human infants are. In contrast to human infants, apes successfully track nonsolid substances or split solid objects through occlusion (Cacchione & Call, 2010a; Cacchione, Hrubesch, & Call, 2012, 2013). The present study aims to investigate whether the lower vulnerability of great apes to cohesion violations also manifests when they are tracking collections. While even very young human infants appreciate the continuous existence of solid bound objects, they fail to show similar intuitions when tracking collections of objects (Chiang & Wynn, 2000). In a manual search task inspired by recent infant research, we tested whether humans’ closest relatives, the great apes, showed a similar contrast in their reasoning about single solid objects and objects within collections. The results suggest that, in contrast to human infants, great apes appreciate the continuous existence of objects within collections and successfully track them through occlusion. This confirms the view that great apes are generally less vulnerable to cohesion violations than human infants.
Resumo:
Chromosomal mutations induced by ethyl methanesulfonate (EMS) treatment can cause female sterility or maternal-effect lethality in Drosophila. EMS is particularly useful to researchers because it creates mutations independent of position effects. However, because researchers have little control over the chromosomal site of mutation, post-mutagenic genetic mapping is required to determine the cytological location of the mutation. To make a valuable set of mutants more useful to the research community, we have mapped the uncharacterized part of the female-sterile – maternal-effect lethal Tübingen collection. We mapped 49 female-sterile – maternal-effect lethal alleles and 72 lethal alleles to individual deficiency intervals on the third chromosome. In addition, we analyzed the phenotype of ovaries resulting from female sterile mutations. The observed phenotypes range from tumorous ovaries and early blocks in oogenesis, to later blocks, slow growth, blocks in stage 10, to apparently full development of the ovary. The mapping and phenotypic characterization of these 121 mutations provide the necessary information for the researcher to consider a specific mutant as a candidate for their gene of interest.Key words: Drosophila melanogaster, oogenesis, female sterile, maternal-effect lethal, EMS-induced mutations.
Resumo:
Off-site effects of soil erosion are becoming increasingly important, particularly the pollution of surface waters. In order to develop environmentally efficient and cost effective mitigation options it is essential to identify areas that bear both a high erosion risk and high connectivity to surface waters. This paper introduces a simple risk assessment tool that allows the delineation of potential critical source areas (CSA) of sediment input into surface waters concerning the agricultural areas of Switzerland. The basis are the erosion risk map with a 2 m resolution (ERM2) and the drainage network, which is extended by drained roads, farm tracks, and slope depressions. The probability of hydrological and sedimentological connectivity is assessed by combining soil erosion risk and extended drainage network with flow distance calculation. A GIS-environment with multiple-flow accumulation algorithms is used for routing runoff generation and flow pathways. The result is a high resolution connectivity map of the agricultural area of Switzerland (888,050 ha). Fifty-five percent of the computed agricultural area is potentially connected with surface waters, 45% is not connected. Surprisingly, the larger part of 34% (62% of the connected area) is indirectly connected with surface waters through drained roads, and only 21% are directly connected. The reason is the topographic complexity and patchiness of the landscape due to a dense road and drainage network. A total of 24% of the connected area and 13% of the computed agricultural area, respectively, are rated with a high connectivity probability. On these CSA an adapted land use is recommended, supported by vegetated buffer strips preventing sediment load. Even areas that are far away from open water bodies can be indirectly connected and need to be included in planning of mitigation measures. Thus, the connectivity map presented is an important decision-making tool for policy-makers and extension services. The map is published on the web and thus available for application.
Resumo:
While many anticancer therapies aim to target the death of tumor cells, sophisticated resistance mechanisms in the tumor cells prevent cell death induction. In particular enzymes of the glutathion-S-transferase (GST) family represent a well-known detoxification mechanism, which limit the effect of chemotherapeutic drugs in tumor cells. Specifically, GST of the class P1 (GSTP1-1) is overexpressed in colorectal tumor cells and renders them resistant to various drugs. Thus, GSTP1-1 has become an important therapeutic target. We have recently shown that thiazolides, a novel class of anti-infectious drugs, induce apoptosis in colorectal tumor cells in a GSTP1-1-dependent manner, thereby bypassing this GSTP1-1-mediated drug resistance. In this study we investigated in detail the underlying mechanism of thiazolide-induced apoptosis induction in colorectal tumor cells. Thiazolides induce the activation of p38 and Jun kinase, which is required for thiazolide-induced cell death. Activation of these MAP kinases results in increased expression of the pro-apoptotic Bcl-2 homologs Bim and Puma, which inducibly bind and sequester Mcl-1 and Bcl-xL leading to the induction of the mitochondrial apoptosis pathway. Of interest, while an increase in intracellular glutathione levels resulted in increased resistance to cisplatin, it sensitized colorectal tumor cells to thiazolide-induced apoptosis by promoting increased Jun kinase activation and Bim induction. Thus, thiazolides may represent an interesting novel class of anti-tumor agents by specifically targeting tumor resistance mechanisms, such as GSTP1-1.
Resumo:
A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse x hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.