45 resultados para Male sterile
Resumo:
Deep litter has been shown to decrease stereotypic wire-gnawing in male golden hamsters, suggesting that increased litter depth may be associated with decreased chronic stress levels. To determine the relationship between litter depth and stress levels in hamsters, the authors measured serum levels of corticosterone, cortisol, and ACTH in male golden hamsters kept in cages with three different depths of litter. The duration of handling the hamsters significantly increased the concentrations of corticosterone, cortisol, and the ratio of cortisol/corticosterone. It took longer to catch hamsters housed in cages with deep litter and the ACTH levels were higher in these hamsters. The positive effect of the enrichment (deep litter) was diminished by methodological problems during handling/anesthesia.
Resumo:
Growth and sexual development are closely interlinked in fish; however, no reports exist on potential effects of estrogen on the GH/IGF-I-axis in developing fish. We investigate whether estrogen exposure during early development affects growth and the IGF-I system, both at the systemic and tissue level. Tilapia were fed from 10 to 40 days post fertilization (DPF) with 17alpha-ethinylestradiol (EE(2)). At 50, 75, 90, and 165 DPF, length, weight, sex ratio, serum IGF-I (RIA), pituitary GH mRNA and IGF-I, and estrogen receptor alpha (ERalpha) mRNA in liver, gonads, brain, and gills (real-time PCR) were determined and the results correlated to those of in situ hybridization for IGF-I. Developmental exposure to EE(2) had persistent effects on sex ratio and growth. Serum IGF-I, hepatic IGF-I mRNA, and the number of IGF-I mRNA-containing hepatocytes were significantly decreased at 75 DPF, while liver ERalpha mRNA was significantly induced. At 75 DPF, a transient decline of IGF-I mRNA and a largely reduced number of IGF-I mRNA-containing neurons were observed in the female brain. In both sexes, pituitary GH mRNA was significantly suppressed. A transient downregulation of IGF-I mRNA occurred in ovaries (75 DPF) and testes (90 DPF). In agreement, in situ hybridization revealed less IGF-I mRNA signals in granulosa and germ cells. Our results show for the first time that developmental estrogen treatment impairs GH/IGF-I expression in fish, and that the effects persist. These long-lasting effects both seem to be exerted indirectly via inhibition of pituitary GH and directly by suppression of local IGF-I in organ-specific cells.
Resumo:
The control of cell growth, that is cell size, is largely controlled by mTOR (the mammalian target of rapamycin), a large serine/threonine protein kinase that regulates ribosome biogenesis and protein translation. mTOR activity is regulated both by the availability of growth factors, such as insulin/IGF-1 (insulin-like growth factor 1), and by nutrients, notably the supply of certain key amino acids. The last few years have seen a remarkable increase in our understanding of the canonical, growth factor-regulated pathway for mTOR activation, which is mediated by the class I PI3Ks (phosphoinositide 3-kinases), PKB (protein kinase B), TSC1/2 (the tuberous sclerosis complex) and the small GTPase, Rheb. However, the nutrient-responsive input into mTOR is important in its own right and is also required for maximal activation of mTOR signalling by growth factors. Despite this, the details of the nutrient-responsive signalling pathway(s) controlling mTOR have remained elusive, although recent studies have suggested a role for the class III PI3K hVps34. In this issue of the Biochemical Journal, Findlay et al. demonstrate that the protein kinase MAP4K3 [mitogen-activated protein kinase kinase kinase kinase-3, a Ste20 family protein kinase also known as GLK (germinal centre-like kinase)] is a new component of the nutrient-responsive pathway. MAP4K3 activity is stimulated by administration of amino acids, but not growth factors, and this is insensitive to rapamycin, most likely placing MAP4K3 upstream of mTOR. Indeed, MAP4K3 is required for phosphorylation of known mTOR targets such as S6K1 (S6 kinase 1), and overexpression of MAP4K3 promotes the rapamycin-sensitive phosphorylation of these same targets. Finally, knockdown of MAP4K3 levels causes a decrease in cell size. The results suggest that MAP4K3 is a new component in the nutrient-responsive pathway for mTOR activation and reveal a completely new function for MAP4K3 in promoting cell growth. Given that mTOR activity is frequently deregulated in cancer, there is much interest in new strategies for inhibition of this pathway. In this context, MAP4K3 looks like an attractive drug target since inhibitors of this enzyme should switch off mTOR, thereby inhibiting cell growth and proliferation, and promoting apoptosis.
Resumo:
BACKGROUND: Lack of reliable dietary data has hampered the ability to effectively distinguish between effects of smoking and diet on plasma antioxidant status. As confirmed by analyses of comprehensive food-frequency questionnaires, the total dietary intakes of fruit and vegetables and of dietary antioxidants were not significantly different between the study groups in the present study, thereby enabling isolation of the effect of smoking. OBJECTIVE: Our objective was to investigate the effect of smoking on plasma antioxidant status by measuring ascorbic acid, alpha-tocopherol, gamma-tocopherol, beta-carotene, and lycopene, and subsequently, to test the effect of a 3-mo dietary supplementation with a moderate-dose vitamin cocktail. DESIGN: In a double-blind, placebo-controlled design, the effect of a vitamin cocktail containing 272 mg vitamin C, 31 mg all-rac-alpha-tocopheryl acetate, and 400 microg folic acid on plasma antioxidants was determined in a population of smokers (n = 37) and nonsmokers (n = 38). The population was selected for a low intake of fruit and vegetables and recruited from the San Francisco Bay area. RESULTS: Only ascorbic acid was significantly depleted by smoking per se (P < 0.01). After the 3-mo supplementation period, ascorbic acid was efficiently repleted in smokers (P < 0.001). Plasma alpha-tocopherol and the ratio of alpha- to gamma-tocopherol increased significantly in both supplemented groups (P < 0.05). CONCLUSIONS: Our data suggest that previous reports of lower concentrations of plasma vitamin E and carotenoids in smokers than in nonsmokers may primarily have been caused by differences in dietary habits between study groups. Plasma ascorbic acid was depleted by smoking and repleted by moderate supplementation.
Resumo:
Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid.
Resumo:
Most studies on selection in plants estimate female fitness components and neglect male mating success, although the latter might also be fundamental to understand adaptive evolution. Information from molecular genetic markers can be used to assess determinants of male mating success through parentage analyses. We estimated paternal selection gradients on floral traits in a large natural population of the herb Mimulus guttatus using a paternity probability model and maximum likelihood methods. This analysis revealed more significant selection gradients than a previous analysis based on regression of estimated male fertilities on floral traits. There were differences between results of univariate and multivariate analyses most likely due to the underlying covariance structure of the traits. Multivariate analysis, which corrects for the covariance structure of the traits, indicated that male mating success declined with distance from and depended on the direction to the mother plants. Moreover, there was directional selection for plants with fewer open flowers which have smaller corollas, a smaller anther-stigma separation, more red dots on the corolla and a larger fluctuating asymmetry therein. For most of these traits, however, there was also stabilizing selection indicating that there are intermediate optima for these traits. The large number of significant selection gradients in this study shows that even in relatively large natural populations where not all males can be sampled, it is possible to detect significant paternal selection gradients, and that such studies can give us valuable information required to better understand adaptive plant evolution.