43 resultados para Machine vision and image processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategies of cognitive control are helpful in reducing anxiety experienced during anticipation of unpleasant or potentially unpleasant events. We investigated the associated cerebral information processing underlying the use of a specific cognitive control strategy during the anticipation of affect-laden events. Using functional magnetic resonance imaging, we examined differential brain activity during anticipation of events of unknown and negative emotional valence in a group of eighteen healthy subjects that used a cognitive control strategy, similar to "reality checking" as used in psychotherapy, compared with a group of sixteen subjects that did not exert cognitive control. While expecting unpleasant stimuli, the "cognitive control" group showed higher activity in left medial and dorsolateral prefrontal cortex areas but reduced activity in the left extended amygdala, pulvinar/lateral geniculate nucleus and fusiform gyrus. Cognitive control during the "unknown" expectation was associated with reduced amygdalar activity as well and further with reduced insular and thalamic activity. The amygdala activations associated with cognitive control correlated negatively with the reappraisal scores of an emotion regulation questionnaire. The results indicate that cognitive control of particularly unpleasant emotions is associated with elevated prefrontal cortex activity that may serve to attenuate emotion processing in for instance amygdala, and, notably, in perception related brain areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coarse semantic encoding and broad categorization behavior are the hallmarks of the right cerebral hemisphere's contribution to language processing. We correlated 40 healthy subjects' breadth of categorization as assessed with Pettigrew's category width scale with lateral asymmetries in perceptual and representational space. Specifically, we hypothesized broader category width to be associated with larger leftward spatial biases. For the 20 men, but not the 20 women, this hypothesis was confirmed both in a lateralized tachistoscopic task with chimeric faces and a random digit generation task; the higher a male participant's score on category width, the more pronounced were his left-visual field bias in the judgement of chimeric faces and his small-number preference in digit generation ("small" is to the left of "large" in number space). Subjects' category width was unrelated to lateral displacements in a blindfolded tactile-motor rod centering task. These findings indicate that visual-spatial functions of the right hemisphere should not be considered independent of the same hemisphere's contribution to language. Linguistic and spatial cognition may be more tightly interwoven than is currently assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM To compare image quality and diagnostic confidence of 100 kVp CT pulmonary angiography (CTPA) in patients with body weights (BWs) below and above 100kg. MATERIALS AND METHODS The present retrospective study comprised 216 patients (BWs of 75-99kg, 114 patients; 100-125kg, 88 patients; >125kg, 14 patients), who received 100 kVp CTPA to exclude pulmonary embolism. The attenuation was measured and the contrast-to-noise ratio (CNR) was calculated in the pulmonary trunk. Size-specific dose estimates (SSDEs) were evaluated. Three blinded radiologists rated subjective image quality and diagnostic confidence. Results between the BW groups and between three body mass index (BMI) groups (BMI <25kg/m(2), BMI = 25-29.9kg/m(2), and BMI ≥30kg/m(2), i.e., normal weight, overweight, and obese patients) were compared using the Kruskal-Wallis test. RESULTS Vessel attenuation was higher and SDDE was lower in the 75-99kg group than at higher BWs (p-values between <0.001 and 0.03), with no difference between the 100-125 and >125kg groups (p = 0.892 and 1). Subjective image quality and diagnostic confidence were not different among the BW groups (p = 0.225 and 1). CNR was lower (p < 0.006) in obese patients than in normal weight or overweight subjects. Diagnostic confidence was not different in the BMI groups (p = 0.105). CONCLUSION CTPA at 100 kVp tube voltage can be used in patients weighing up to 125kg with no significant deterioration of subjective image quality and confidence. The applicability of 100 kVp in the 125-150kg BW range needs further testing in larger collectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To find a threshold body weight (BW) below 100 kg above which computed tomography pulmonary angiography (CTPA) using reduced radiation and a reduced contrast material (CM) dose provides significantly impaired quality and diagnostic confidence compared with standard-dose CTPA. METHODS In this prospectively randomised study of 501 patients with suspected pulmonary embolism and BW <100 kg, 246 were allocated into the low-dose group (80 kVp, 75 ml CM) and 255 into the normal-dose group (100 kVp, 100 ml CM). Contrast-to-noise ratio (CNR) in the pulmonary trunk was calculated. Two blinded chest radiologists independently evaluated subjective image quality and diagnostic confidence. Data were compared between the normal-dose and low-dose groups in five BW subgroups. RESULTS Vessel attenuation did not differ between the normal-dose and low-dose groups within each BW subgroup (P = 1.0). The CNR was higher with the normal-dose compared with the low-dose protocol (P < 0.006) in all BW subgroups except for the 90-99 kg subgroup (P = 0.812). Subjective image quality and diagnostic confidence did not differ between CT protocols in all subgroups (P between 0.960 and 1.0). CONCLUSIONS Subjective image quality and diagnostic confidence with 80 kVp CTPA is not different from normal-dose protocol in any BW group up to 100 kg. KEY POINTS • 80 kVp CTPA is safe in patients weighing <100 kg • Reduced radiation and iodine dose still provide high vessel attenuation • Image quality and diagnostic confidence with low-dose CTPA is good • Diagnostic confidence does not deteriorate in obese patients weighing <100 kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An autonomous energy source within a human body is of key importance in the development of medical implants. This work deals with the modelling and the validation of an energy harvesting device which converts the myocardial contractions into electrical energy. The mechanism consists of a clockwork from a commercially available wrist watch. We developed a physical model which is able to predict the total amount of energy generated when applying an external excitation. For the validation of the model, a custom-made hexapod robot was used to accelerate the harvesting device along a given trajectory. We applied forward kinematics to determine the actual motion experienced by the harvesting device. The motion provides translational as well as rotational motion information for accurate simulations in three-dimensional space. The physical model could be successfully validated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A prerequisite for high performance in motor tasks is the acquisition of egocentric sensory information that must be translated into motor actions. A phenomenon that supports this process is the Quiet Eye (QE) defined as long final fixation before movement initiation. It is assumed that the QE facilitates information processing, particularly regarding movement parameterization. Aims: The question remains whether this facilitation also holds for the information-processing stage of response selection and – related to perception crucial – stage of stimulus identification. Method: In two experiments with sport science students, performance-enhancing effects of experimentally manipulated QE durations were tested as a function of target position predictability and target visibility, thereby selectively manipulating response selection and stimulus identification demands, respectively. Results: The results support the hypothesis of facilitated information processing through long QE durations since in both experiments performance-enhancing effects of long QE durations were found under increased processing demands only. In Experiment 1, QE duration affected performance only if the target position was not predictable and positional information had to be processed over the QE period. In Experiment 2, in a full vs. no target visibility comparison with saccades to the upcoming target position induced by flicker cues, the functionality of a long QE duration depended on the visual stimulus identification period as soon as the interval falls below a certain threshold. Conclusions: The results corroborate earlier findings that QE efficiency depends on demands put on the visuomotor system, thereby furthering the assumption that the phenomenon supports the processes of sensorimotor integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent functional magnetic resonance imaging (fMRI) studies consistently revealed contributions of fronto-parietal and related networks to the execution of a visuospatial judgment task, the so-called "Clock Task". However, due to the low temporal resolution of fMRI, the exact cortical dynamics and timing of processing during task performance could not be resolved until now. In order to clarify the detailed cortical activity and temporal dynamics, 14 healthy subjects performed an established version of the "Clock Task", which comprises a visuospatial task (angle discrimination) and a control task (color discrimination) with the same stimulus material, in an electroencephalography (EEG) experiment. Based on the time-resolved analysis of network activations (microstate analysis), differences in timing between the angle compared to the color discrimination task were found after sensory processing in a time window starting around 200ms. Significant differences between the two tasks were observed in an analysis window from 192ms to 776ms. We divided this window in two parts: an early phase - from 192ms to ∼440ms, and a late phase - from ∼440ms to 776ms. For both tasks, the order of network activations and the types of networks were the same, but, in each phase, activations for the two conditions were dominated by differing network states with divergent temporal dynamics. Our results provide an important basis for the assessment of deviations in processing dynamics during visuospatial tasks in clinical populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-step etching technique for fine-grained calcite mylonites using 0.37% hydrochloric and 0.1% acetic acid produces a topographic relief which reflects the grain boundary geometry. With this technique, calcite grain boundaries become more intensely dissolved than their grain interiors but second phase minerals like dolomite, quartz, feldspars, apatite, hematite and pyrite are not affected by the acid and therefore form topographic peaks. Based on digital backscatter electron images and element distribution maps acquired on a scanning electron microscope, the geometry of calcite and the second phase minerals can be automatically quantified using image analysis software. For research on fine-grained carbonate rocks (e.g. dolomite calcite mixtures), this low-cost approach is an attractive alternative to the generation of manual grain boundary maps based on photographs from ultra-thin sections or orientation contrast images.