57 resultados para MEAN-CURVATURE
Resumo:
Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.
Resumo:
Purpose: To quantify the in vivo deformations of the popliteal artery during leg flexion in subjects with clinically relevant peripheral artery disease (PAD). Methods: Five patients (4 men; mean age 69 years, range 56–79) with varying calcification levels of the popliteal artery undergoing endovascular revascularization underwent 3-dimensional (3D) rotational angiography. Image acquisition was performed with the leg straight and with a flexion of 70°/20° in the knee/hip joints. The arterial centerline and the corresponding branches in both positions were segmented to create 3D reconstructions of the arterial trees. Axial deformation, twisting, and curvatures were quantified. Furthermore, the relationships between the calcification levels and the deformations were investigated. Results: An average shortening of 5.9%±2.5% and twist rate of 3.8±2.2°/cm in the popliteal artery were observed. Maximal curvatures in the straight and flexed positions were 0.12±0.04 cm−1 and 0.24±0.09 cm−1, respectively. As the severity of calcification increased, the maximal curvature in the straight position increased from 0.08 to 0.17 cm−1, while an increase from 0.17 to 0.39 cm−1 was observed for the flexed position. Axial elongations and arterial twisting were not affected by the calcification levels. Conclusion: The popliteal artery of patients with symptomatic PAD is exposed to significant deformations during flexion of the knee joint. The severity of calcification directly affects curvature, but not arterial length or twisting angles. This pilot study also showed the ability of rotational angiography to quantify the 3D deformations of the popliteal artery in patients with various levels of calcification.
Resumo:
For several years now, neuroscientific research has been striving towards fundamental answers to questions about the relevance of sex/gender to language processing in the brain. This research has been effected through the search for sex/gender differences in the neurobiology of language processing. Thus, the main aim has ever been to focus on the differentiation of the sexes/genders, failing to define what sex, what gender, what female or male is in neurolingustic research. In other words, although neuroscientific findings have provided key insights into the brain functioning of women and men, neuropsychology has rarely questioned the complexity of the sex/gender variable beyond biology. What does “female” or “male” mean in human neurocognition; how are operationalisations implemented along the axes of “femaleness” or “maleness”; or what biological evidence is used to register the variables sex and/or gender? In the neurosciences as well as in neurocognitive research, questions such as these have so far not been studied in detail, even if they are highly significant for the scientific process. Instead, the variable of sex/gender has always been thought as solely dichotomous (as either female or male), oppositional and exclusionary of each other. Here, this theoretical contribution sets in. Based on findings in neuroscience and concepts in gender theory, this poster is dedicated to the reflection about what sex/gender is in the neuroscience of language processing. Following this aim, two levels of interest will be addressed. First: How do we define sex/gender at the level of participants? And second: How do we define sex/gender at the level of the experimental task? For the first, a multifactorial registration (work in progress) of the variable sex/gender will be presented, i.e. a tool that records sex/gender in terms of biology and social issues as well as on a spectrum between femaleness and maleness. For the second, the compulsory dichotomy of a gendered task when neurolinguistically approaching our cognitions of sex/gender will be explored.
Resumo:
This study analyses the impact on the oceanic mean state of the evolution of the oceanic component (NEMO) of the climate model developed at Institut Pierre Simon Laplace (IPSL-CM), from the version IPSL-CM4, used for third phase of the Coupled Model Intercomparison Project (CMIP3), to IPSL-CM5A, used for CMIP5. Several modifications have been implemented between these two versions, in particular an interactive coupling with a biogeochemical module, a 3-band model for the penetration of the solar radiation, partial steps at the bottom of the ocean and a set of physical parameterisations to improve the representation of the impact of turbulent and tidal mixing. A set of forced and coupled experiments is used to single out the effect of each of these modifications and more generally the evolution of the oceanic component on the IPSL coupled models family. Major improvements are located in the Southern Ocean, where physical parameterisations such as partial steps and tidal mixing reinforce the barotropic transport of water mass, in particular in the Antarctic Circumpolar Current) and ensure a better representation of Antarctic bottom water masses. However, our analysis highlights that modifications, which substantially improve ocean dynamics in forced configuration, can yield or amplify biases in coupled configuration. In particular, the activation of radiative biophysical coupling between biogeochemical cycle and ocean dynamics results in a cooling of the ocean mean state. This illustrates the difficulty to improve and tune coupled climate models, given the large number of degrees of freedom and the potential compensating effects masking some biases.
Resumo:
In the course of this study, stiffness of a fibril array of mineralized collagen fibrils modeled with a mean field method was validated experimentally at site-matched two levels of tissue hierarchy using mineralized turkey leg tendons (MTLT). The applied modeling approaches allowed to model the properties of this unidirectional tissue from nanoscale (mineralized collagen fibrils) to macroscale (mineralized tendon). At the microlevel, the indentation moduli obtained with a mean field homogenization scheme were compared to the experimental ones obtained with microindentation. At the macrolevel, the macroscopic stiffness predicted with micro finite element (μFE) models was compared to the experimental stiffness measured with uniaxial tensile tests. Elastic properties of the elements in μFE models were injected from the mean field model or two-directional microindentations. Quantitatively, the indentation moduli can be properly predicted with the mean-field models. Local stiffness trends within specific tissue morphologies are very weak, suggesting additional factors responsible for the stiffness variations. At macrolevel, the μFE models underestimate the macroscopic stiffness, as compared to tensile tests, but the correlations are strong.
Resumo:
INTRODUCTION: The objective of this study was to evaluate the effects of two different mean arterial blood pressure (MAP) targets on needs for resuscitation, organ dysfunction, mitochondrial respiration and inflammatory response in a long-term model of fecal peritonitis. METHODS: Twenty-four anesthetized and mechanically ventilated pigs were randomly assigned (n = 8/group) to a septic control group (septic-CG) without resuscitation until death or one of two groups with resuscitation performed after 12 hours of untreated sepsis for 48 hours, targeting MAP 50-60 mmHg (low-MAP) or 75-85 mmHg (high-MAP). RESULTS: MAP at the end of resuscitation was 56 ± 13 mmHg (mean ± SD) and 76 ± 17 mmHg respectively, for low-MAP and high-MAP groups. One animal each in high- and low-MAP groups, and all animals in septic-CG died (median survival time: 21.8 hours, inter-quartile range: 16.3-27.5 hours). Norepinephrine was administered to all animals of the high-MAP group (0.38 (0.21-0.56) mcg/kg/min), and to three animals of the low-MAP group (0.00 (0.00-0.25) mcg/kg/min; P = 0.009). The high-MAP group had a more positive fluid balance (3.3 ± 1.0 mL/kg/h vs. 2.3 ± 0.7 mL/kg/h; P = 0.001). Inflammatory markers, skeletal muscle ATP content and hemodynamics other than MAP did not differ between low- and high-MAP groups. The incidence of acute kidney injury (AKI) after 12 hours of untreated sepsis was, respectively for low- and high-MAP groups, 50% (4/8) and 38% (3/8), and in the end of the study 57% (4/7) and 0% (P = 0.026). In septic-CG, maximal isolated skeletal muscle mitochondrial Complex I, State 3 respiration increased from 1357 ± 149 pmol/s/mg to 1822 ± 385 pmol/s/mg, (P = 0.020). In high- and low-MAP groups, permeabilized skeletal muscle fibers Complex IV-state 3 respiration increased during resuscitation (P = 0.003). CONCLUSIONS: The MAP targets during resuscitation did not alter the inflammatory response, nor affected skeletal muscle ATP content and mitochondrial respiration. While targeting a lower MAP was associated with increased incidence of AKI, targeting a higher MAP resulted in increased net positive fluid balance and vasopressor load during resuscitation. The long-term effects of different MAP targets need to be evaluated in further studies.
Resumo:
On the Limits of Greenwich Mean Time, or The Failure of a Modernist Revolution From the introduction of World Standard Time in 1884 to Einstein’s theory of relativity, the nature and regulation of time was a highly contested issue in modernism, with profound political, social and epistemological consequences. Modernist aesthetic sensibilities widely revolted against the increasingly strict rule of the clock, which, as Georg Simmel observed in “The Metropolis and Mental Life,” was established as the necessary basis of a capitalist, urban life. This paper will focus on the contending conceptions of time arising in key modernist texts by authors like Joyce, Woolf and Conrad. I will argue that the uniformity and regularity of time necessary to a rising capitalist society came under attack in a similar way by both modernist literary aesthetics and new scientific discoveries. However, while Einstein’s theory of relativity may have led to a subsequent change of paradigm in scientific thought, it has failed to significantly alter social and popular conceptions of time. Although alternative ways of thinking and living with time are proposed by modernist authors, they remain isolated aesthetic experiments, ineffectual against the regulatory pressure of economic and social structures. In this struggle about the nature of time, so I suggest, science and literature join force against a society that is increasingly governed by economic reason. The fact that they lost this struggle can serve as a striking illustration of an increasing shift of social influence from science and art towards economy.
Resumo:
RATIONALE In biomedical journals authors sometimes use the standard error of the mean (SEM) for data description, which has been called inappropriate or incorrect. OBJECTIVE To assess the frequency of incorrect use of SEM in articles in three selected cardiovascular journals. METHODS AND RESULTS All original journal articles published in 2012 in Cardiovascular Research, Circulation: Heart Failure and Circulation Research were assessed by two assessors for inappropriate use of SEM when providing descriptive information of empirical data. We also assessed whether the authors state in the methods section that the SEM will be used for data description. Of 441 articles included in this survey, 64% (282 articles) contained at least one instance of incorrect use of the SEM, with two journals having a prevalence above 70% and "Circulation: Heart Failure" having the lowest value (27%). In 81% of articles with incorrect use of SEM, the authors had explicitly stated that they use the SEM for data description and in 89% SEM bars were also used instead of 95% confidence intervals. Basic science studies had a 7.4-fold higher level of inappropriate SEM use (74%) than clinical studies (10%). LIMITATIONS The selection of the three cardiovascular journals was based on a subjective initial impression of observing inappropriate SEM use. The observed results are not representative for all cardiovascular journals. CONCLUSION In three selected cardiovascular journals we found a high level of inappropriate SEM use and explicit methods statements to use it for data description, especially in basic science studies. To improve on this situation, these and other journals should provide clear instructions to authors on how to report descriptive information of empirical data.
Resumo:
Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.
Resumo:
Two groundwater bodies, Grazer Feld and Leibnitzer Feld, with surface areas of 166 and 103 km2 respectively are characterised for the first time by measuring the combination of d18O/d2H, 3H/3He, 85Kr, CFC-11, CFC-12 and hydrochemistry in 34 monitoring wells in 2009/2010. The timescales of groundwater recharge have been characterised by 131 d18O measurements of well and surface water sampled on a seasonal basis. Most monitoring wells show a seasonal variation or indicate variable contributions of the main river Mur (0–30%, max. 70%) and/or other rivers having their recharge areas in higher altitudes. Combined d18O/d2H-measurements indicate that 65–75% of groundwater recharge in the unusual wet year of 2009 was from precipitation in the summer based on values from the Graz meteorological station. Monitoring wells downstream of gravel pit lakes show a clear evaporation trend. A boron–nitrate differentiation plot shows more frequent boron-rich water in the more urbanised Grazer Feld and more frequent nitrate-rich water in the more agricultural used Leibnitzer Feld indicating that a some of the nitrate load in the Grazer Feld comes from urban sewer water. Several lumped parameter models based on tritium input data from Graz and monthly data from the river Mur (Spielfeld) since 1977 yield a Mean Residence Time (MRT) for the Mur-water itself between 3 and 4 years in this area. Data from d18O, 3H/3He measurements at the Wagna lysimeter station supports the conclusion that 90% of the groundwaters in the Grazer Feld and 73% in the Leibnitzer Feld have MRTs of <5 years. Only in a few groundwaters were MRTs of 6–10 or 11–25 years as a result of either a long-distance water inflow in the basins or due to longer flow path in somewhat deeper wells (>20 m) with relative thicker unsaturated zones. The young MRT of groundwater from two monitoring wells in the Leibnitzer Feld was confirmed by 85Kr-measurements. Most CFC-11 and CFC-12 concentrations in the groundwater exceed the equilibration concentrations of modern concentrations in water and are therefore unsuitable for dating purposes. An enrichment factor up to 100 compared to atmospheric equilibrium concentrations and the obvious correlation of CFC-12 with SO4, Na, Cl and B in the ground waters of the Grazer Feld suggest that waste water in contact with CFC-containing material above and below ground is the source for the contamination. The dominance of very young groundwater (<5 years) indicates a recent origin of the contamination by nitrate and many other components observed in parts of the groundwater bodies. Rapid measures to reduce those sources are needed to mitigate against further deterioration of these waters.
Resumo:
Introduction: Organisational changes in sports federations are often associated with a drift from a volunteer driven to an increasingly business-like phenomenon (Shilbury & Ferkins, 2011). This process of transfor-mation is be called as “professionalization”. Accordingly, professionalization seems to be an appropriate strategy for sport organisations in order to meet organizational pressure due to challenges of a more complex and dynamic changing environment adequately. Despite the increasing research interest and the attempts for systematization on the phenomenon of professionalization it still remains unclear what does the term professionalization exactly mean (Dowling et al., 2014). Thus, there is a lack of a consistent concept of professionalization that is needed in order to explore different facets and perspectives of this phenomenon more validly. Against this background following question emerged: What is the suitable concept of professionalization for analyzing the actual ongoing processes of change, adaption or transformation in sport federations? Methods: Dealing with this question, following two-step approach was choosen: (1) In a first step a scholar’s perspective at professionalisation of sport organisations will be displayed in order to explore both the common ground as well as divergences and inconsistencies in previous approaches. Therefore, a literature review is indicated. (2) In a second step, and in contrast to previous studies we will consider a practical point of view by a so called second-order observation of experts to gain valuable insights into current thinking and acting towards professionalization in sport federations. In doing so, a hermeneutical approach is used, which is about understanding the meaning of contexts by grasping the everyday world, and draw insight and meaning from it (Shilbury et al., 2013). Accordance with hermeneutics, the explorative interpretive knowledge of expert interviews was used. The interviews were conducted with a sample of six selected experts, who have both dedicated insider knowledge and the overall view of all Swiss sport federations. Results and discussion: The summaries of literature review could be categorized into two research currents. The one defines professionalization as a structural process towards professional status of occupations. The other defines it in a broader sense as an organisational change towards a business-like approach. Whereas the first perspective there is a broad scientific consensus that second isn’t that clear, however. Explorative analysis of interview data reveals different themes in relation to professionalization of sports federation. First theme deals with a changed philosophy as more strategic alignment towards for-profit, efficiency and quality orientation. Second theme refers to paid work associated with more competence orientation and balanced governance between paid and voluntary work. Third theme deals with acting shift towards more rationalization and efficiency by implementation of innovative management and communication tools. Based on findings of both our review of scholar`s perspective as well insights from experts we will provide – in the sense of synthesis – a more clear understanding of what does professionalization mean that can be useful in terms of further studies. References: Dowling, M., Edwards, J. & Washington, M. (2014). Understanding the concept of professionalisation in sport management research. Sport Management Review, 17 (4), 520–529. Shilbury, D., Ferkins, L. & Smythe, L. (2013). Sport governance encounters: Insights from lived experiences. Sport Management Review, 16,349–363. Shilbury, D., & Ferkins, L. (2011). Professionalisation, sport governance and strategic capability. Managing Leisure, 16, 108–127.