68 resultados para MANTLE PLUMES
Resumo:
It is widely accepted that stabilization of the continental crust requires the presence of sub-continental lithospheric mantle. However, the degree of melt depletion required to stabilize the lithosphere and whether widespread refertilization is a significant process remain unresolved. Here, major and trace element, including platinum group elements (PGE), characterization of 40 mantle xenoliths from 13 localities is used to constrain the melt depletion, refertilization and metasomatic history of lithospheric mantle underneath the micro-continent Zealandia. Our previously published Re–Os isotopic data for a subset of these xenoliths indicate Phanerozoic to Paleoproterozoic ages and, reinterpreted with the new major and trace element data presented here, demonstrate that a large volume (>2 million km3) of lithospheric mantle with an age of 1·99 ± 0·21 Ga is present below the much younger crust of Zealandia. A peritectic melting model using moderately incompatible trace elements (e.g. Yb) in bulk-rocks demonstrates that these peridotites experienced a significant range of degrees of partial melting, between 3 and 28%. During subsolidus equilibration clinopyroxene gains significant rare earth elements (REE), which then leads to the underestimation of the degree of partial melting by ≤12% in fertile xenoliths. A new approach taking into account the effects of subsolidus re-equilibration on clinopyroxene composition effectively removes discrepancies in the calculated degree of melting and provides consistent estimates of between 4 and 29%. The estimated amount of melting is independent of the Re–Os model ages of the samples. The PGE patterns record simple melt depletion histories and the retention of primary base metal sulfides in the majority of the xenoliths. A rapid decrease in Pt/IrN observed at c. 1·0 wt % Al2O3 is a direct result of the exhaustion of sulfide in the mantle residue at c. 20–25% partial melting and the inability of Pt to form a stable alloy phase. Major elements preserve evidence for refertilization by a basaltic component that resulted in the formation of secondary clinopyroxene and low-forsterite olivine. The majority of xenoliths show the effects of cryptic metasomatic overprinting, ranging from minor to strong light REE enrichments in bulk-rocks (La/YbN = 0·16–15·9). Metasomatism is heterogeneous, with samples varying from those with weak REE enrichment and notable positive Sr and U–Th anomalies and negative Nb–Ta anomalies in clinopyroxene to those that have extremely high concentrations of REE, Th–U and Nb. Chemical compositions are consistent with a carbonatitic component contributing to the metasomatism of the lithosphere under Zealandia. Notably, the intense metasomatism of the samples did not affect the PGE budget of the peridotites as this was controlled by residual sulfides.
Resumo:
The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung.
Resumo:
The distinction of CLL from other mature B-cell neoplasms, especially from leukemic forms of mantle cell lymphoma or splenic marginal zone lymphoma, can be difficult but has important prognostic and therapeutic implications. We measured CLLU1 (CLL upregulated gene1) mRNA by qPCR and found a highly significant difference between CLL and other lymphoid neoplasms (AUC 0.96, 95%CI 0.93-0.99). Based on our cut-off values we can predict CLL and other mature B-cell neoplasms with high probability (PPV 99% and 94%). Analysis of CLLU1 expression is a rapid and reliable tool that may facilitate the diagnosis of mature B-cell neoplasms especially in inconclusive cases.
Resumo:
The Carrington Event of 1859 is considered to be among the largest space weather events of the last 150 years. We show that only one out of 14 well-resolved ice core records from Greenland and Antarctica has a nitrate spike dated to 1859. No sharp spikes are observed in the Antarctic cores studied here. In Greenland numerous spikes are observed in the 40 years surrounding 1859, but where other chemistry was measured, all large spikes have the unequivocal signal, including co-located spikes in ammonium, formate, black carbon and vanillic acid, of biomass burning plumes. It seems certain that most spikes in an earlier core, including that claimed for 1859, are also due to biomass burning plumes, and not to solar energetic particle (SEP) events. We conclude that an event as large as the Carrington Event did not leave an observable, widespread imprint in nitrate in polar ice. Nitrate spikes cannot be used to derive the statistics of SEPs.
Resumo:
Although loosening of cemented glenoid components is one of the major complications of total shoulder arthroplasty, there is little information about factors affecting initial fixation of these components in the scapular neck. This study was performed to assess the characteristics of structural fixation of pegged glenoid components, if inserted with two different recommended cementing techniques. Six fresh-frozen shoulder specimens and two types of glenoid components were used. The glenoids were prepared according to the instructions and with the instrumentation of the manufacturer. In 3 specimens, the bone cement was inserted into the peg receiving holes (n = 12) and applied to the back surface of the glenoid component with a syringe. In the other 3 specimens, the cement was inserted into the holes (n = 15) by use of pure finger pressure: no cement was applied on the backside of the component. Micro-computed tomography scans with a resolution of 36 microm showed an intact cement mantle around all 12 pegs (100%) when a syringe was used. An incomplete cement plug was found in 7 of 15 pegs (47%) when the finger-pressure technique was used. Cement penetration into the cancellous bone was deeper in osteopenic bone. Application of bone cement on the backside of the glenoid prosthesis improved seating by filling out small spaces between bone and polyethylene resulting from irregularities after reaming or local cement extrusion from a drill hole. The fixation of a pegged glenoid component is better if the holes are filled with cement under pressure by use of a syringe and if cement is applied to the back of the glenoid component than if cement is inserted with pure finger pressure and no cement is applied to the back surface of the component.
Resumo:
Formation pathways of ancient siliceous iron formations and related Fe isotopic fractionation are still not completely understood. Investigating these processes, however, is difficult as good modern analogues to ancient iron formations are scarce. Modern siliceous Fe oxyhydroxide deposits are found at marine hydrothermal vent sites, where they precipitate from diffuse, low temperature fluids along faults and fissures on the seafloor. These deposits exhibit textural and chemical features that are similar to some Phanerozoic iron formations, raising the question as to whether the latter could have precipitated from diffuse hydrothermal fluids rather than from hydrothermal plumes. In this study, we present the first data on modern Fe oxyhydroxide deposits from the Jan Mayen hydrothermal vent fields, Norwegian-Greenland Sea. The samples we investigated exhibited very low δ56Fe values between -2.09‰ and -0.66‰. Due to various degrees of partial oxidation, the Fe oxyhydroxides are with one exception either indistinguishable from low-temperature hydrothermal fluids from which they precipitated (-1.84‰ and -1.53‰ in δ56Fe) or are enriched in the heavy Fe isotopes. In addition, we investigated Fe isotope variations in Ordovician jasper beds from the Løkken ophiolite complex, Norway, which have been interpreted to represent diagenetic products of siliceous ferrihydrite precursors that precipitated in a hydrothermal plume, in order to compare different formation pathways of Fe oxyhydroxide deposits. Iron isotopes in the jasper samples have higher δ56Fe values (-0.38‰ to +0.89‰) relative to modern, high-temperature hydrothermal vent fluids (ca. -0.40‰ on average), supporting the fallout model. However, formation of the Ordovician jaspers by diffuse venting cannot be excluded, due to lithological differences of the subsurface of the two investigated vent systems. Our study shows that reliable interpretation of Fe isotope variations in modern and ancient marine Fe oxyhydroxide deposits depends on comprehensive knowledge of the geological context. Furthermore, we demonstrate that very negative δ56Fe values in such samples might not be the result of microbial dissimilatory iron reduction, but could be caused instead by inorganic reactions.
Resumo:
The volcanic rocks of the Rhön area (Central European Volcanic Province, Germany) belong to a moderately alkali basaltic suite that is associated with minor tephriphonolites, phonotephrites, tephrites, phonolites and trachytes. Based on isotope sytematics (87Sr/86Sr: 0.7033–0.7042; 143Nd/144Nd: 0.51279–0.51287; 206Pb/204Pb: 19.1–19.5), the inferred parental magmas formed by variable degrees of partial melting of a common asthenospheric mantle source (EAR: European Asthenospheric Reservoir of Cebriá and Wilson, 1995). Tephrites, tephriphonolites, phonotephrites, phonolites and trachytes show depletions and enrichments in some trace elements (Sr, Ba, Nb, Zr, Y) indicating that they were generated by broadly similar differentiation processes that were dominated by fractionation of olivine, clinopyroxene, amphibole, apatite and titaniferous magnetite ± plagioclase ± alkalifeldspar. The fractionated samples seem to have evolved by two distinct processes. One is characterized by pure fractional crystallization indicated by increasing Nb (and other incompatible trace element) concentrations at virtually constant 143Nd/144Nd ~ 0.51280 and 87Sr/86Sr ~ 0.7035. The other process involved an assimilation–fractional crystallization (AFC) process where moderate assimilation to crystallization rates produced evolved magmas characterized by higher Nb concentrations at slightly lower 143Nd/144Nd down to 0.51275. Literature data for some of the evolved rocks show more variable 87Sr/86Sr ranging from 0.7037 to 0.7089 at constant 143Nd/144Nd ~ 0.51280. These features may result from assimilation of upper crustal rocks by highly differentiated low-Sr (< 100 ppm Sr) lavas. However, based on the displacement of the differentiated rocks from this study towards lower 143Nd/144Nd ratios and modeled AFC processes in 143Nd/144Nd vs. 87Sr/86Sr and 207Pb/204Pb vs. 143Nd/144Nd space assimilation of lower crustal rocks seems more likely. The view that assimilation of lower crustal rocks played a role is confirmed by high-precision double-spike Pb isotope data that reveal higher 207Pb/204Pb ratios (15.62–15.63) in the differentiated rocks than in the primitive basanites (15.58–15.61). This is compatible with incorporation of radiogenic Pb from lower crustal xenoliths (207Pb/204Pb: 15.63–15.69) into the melt. However, 206Pb/204Pb ratios are similar for the differentiated rocks (19.13–19.35) and the primitive basanites (19.12–19.55) implying that assimilation involved an ancient crustal end member with a higher U/Pb ratio than the mantle source of the basanites. In addition, alteration-corrected δ18O values of the differentiated rocks range from c. 5 to 7‰ which is the same range as observed in the primitive alkaline rocks. This study confirms previous interpretations that highlighted the role of AFC processes in the evolution of alkaline volcanic rocks in the Rhön area of the Central European Volcanic Province.
Resumo:
Subaquatic volcanic activity has been ongoing in Lake Kivu since the early Holocene and has a dynamic effect on the biological productivity in the surface water, and the preservation of carbonate in the deep anoxic water. Groundwater discharge into the lake’s deepwater propels the upward advection of the water column that ultimately supplies nutrients to the surface water for biological production. The amount of nutrients supplied from the deepwater can be increased suddenly by (1) a cold meteorological event that drives deep seasonal mixing resulting in increased nutrients from below and oxygen from above, or (2) subaquatic volcanic activity that induces a buoyant hydrothermal plume, which entrains nutrients from the deepwater and results in anoxia or suboxic conditions in the surface water. Previous sedimentological studies in Lake Kivu have hypothesized that regional climatic changes are responsible for sudden changes in the preservation of carbonates in the Main Basin. Here we reveal that sublacustrine volcanic events most likely induce the abrupt changes to the geochemistry in the sediment in Lake Kivu. An unprecedented look into the sediment stratigraphy and geochemistry from high-resolution seismic-reflection, and 15N-isotope analyses was conducted in the Main Basin. The results reveal that buoyant hydrothermal plumes caused by subaquatic volcanic activity are a possible trigger for increased biological productivity and organic matter preservation, and that ongoing hydrothermal activity increases the alkalinity in the deepwater, leading to carbonate preservation. The onset of carbonate preservation since the 1970s that is currently observed in the sediment could indicate that hydrothermal discharge has recently increased in the lake.
Resumo:
Field soils show rather different spreading behavior at different water saturations, frequently caused by layering of the soil material. We performed tracer experiments in a laboratory sand tank. Such experiments complement and help comprehension of field investigations. We estimated, by image analysis, the first two moments of small plumes traveling through a two-dimensional, heterogeneous medium with strongly anisotropic correlation structure. Three steady state regimes were analyzed. Two main conclusions were drawn. First, low saturation led to very large heterogeneity and to strong preferential flow. Thus the description of the flow paths and the prediction of the solute arrival times require, in this case, more accurate knowledge about the topological structure. Second, saturation-dependent macroscopic anisotropy is an essential element of transport in unsaturated media. For this reason, small structural soil features should be properly upscaled to give appropriate effective soil parameters to be input in transport models.