112 resultados para Lung volume measurements
Resumo:
One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.
Resumo:
Although postmortem imaging has gained prominence in the field of forensic medicine, evaluation of the postmortem lung remains problematic. Specifically, differentiation of normal postmortem changes and pathological pulmonary changes is challenging and at times impossible. In this study, five corpses were ventilated using a mechanical ventilator with a pressure of 40 mbar (40.8 cm H(2)O). The ventilation was performed via an endotracheal tube, a larynx mask or a continuous positive airway pressure mask. Postmortem computed tomographic images of the lungs before and with a ventilation of 40 mbar (40.8 cm H(2)O) were evaluated and the lung volumes were measured with segmentation software. Postmortem ventilation led to a clearly visible decrease of both the density in the dependant parts of the lungs and ground glass attenuation, whereas consolidated areas remained unchanged. Furthermore, a mean increase in the lung volume of 2.10 l was seen. Pathological changes such as septal thickening or pulmonary nodules in the lung parenchyma became more detectable with postmortem ventilation. Intracorporal postmortem mechanical ventilation of the lungs appears to be an effective method for enhancing detection of small pathologies of the lung parenchyma as well as for discriminating between consolidation, ground glass attenuation and position-dependent density.
Resumo:
Background Leg edema is a common manifestation of various underlying pathologies. Reliable measurement tools are required to quantify edema and monitor therapeutic interventions. Aim of the present work was to investigate the reproducibility of optoelectronic leg volumetry over 3 weeks' time period and to eliminate daytime related within-individual variability. Methods Optoelectronic leg volumetry was performed in 63 hairdressers (mean age 45 ± 16 years, 85.7% female) in standing position twice within a minute for each leg and repeated after 3 weeks. Both lower leg (legBD) and whole limb (limbBF) volumetry were analysed. Reproducibility was expressed as analytical and within-individual coefficients of variance (CVA, CVW), and as intra-class correlation coefficients (ICC). Results A total of 492 leg volume measurements were analysed. Both legBD and limbBF volumetry were highly reproducible with CVA of 0.5% and 0.7%, respectively. Within-individual reproducibility of legBD and limbBF volumetry over a three weeks' period was high (CVW 1.3% for both; ICC 0.99 for both). At both visits, the second measurement revealed a significantly higher volume compared to the first measurement with a mean increase of 7.3 ml ± 14.1 (0.33% ± 0.58%) for legBD and 30.1 ml ± 48.5 ml (0.52% ± 0.79%) for limbBF volume. A significant linear correlation between absolute and relative leg volume differences and the difference of exact day time of measurement between the two study visits was found (P < .001). A therefore determined time-correction formula permitted further improvement of CVW. Conclusions Leg volume changes can be reliably assessed by optoelectronic leg volumetry at a single time point and over a 3 weeks' time period. However, volumetry results are biased by orthostatic and daytime-related volume changes. The bias for day-time related volume changes can be minimized by a time-correction formula.
Resumo:
Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.
Resumo:
Many chronic human lung diseases have their origin in early childhood, yet most murine models used to study them utilize adult mice. An important component of the asthma phenotype is exaggerated airway responses, frequently modelled by methacholine (MCh) challenge. The present study was undertaken to characterize MCh responses in mice from 2 to 8 wk of age measuring absolute lung volume and volume-corrected respiratory mechanics as outcome variables. Female BALB/c mice aged 2, 3, 4, 6, and 8 wk were studied during cumulative intravenous MCh challenge. Following each MCh dose, absolute lung volume was measured plethysmographically at functional residual volume and during a slow inflation to 20-hPa transrespiratory pressure. Respiratory system impedance was measured continuously during the inflation maneuver and partitioned into airway and constant-phase parenchymal components by model fitting. Volume-corrected (specific) estimates of respiratory mechanics were calculated. Intravenous MCh challenge induced a predominantly airway response with no evidence of airway closure in any age group. No changes in functional residual volume were seen in mice of any age during the MCh challenge. The specific airway resistance MCh dose response curves did not show significant differences between the age groups. The results from the present study do not show systematic differences in MCh responsiveness in mice from 2 to 8 wk of age.
Resumo:
OBJECTIVE: To develop a novel application of a tool for semi-automatic volume segmentation and adapt it for analysis of fetal cardiac cavities and vessels from heart volume datasets. METHODS: We studied retrospectively virtual cardiac volume cycles obtained with spatiotemporal image correlation (STIC) from six fetuses with postnatally confirmed diagnoses: four with normal hearts between 19 and 29 completed gestational weeks, one with d-transposition of the great arteries and one with hypoplastic left heart syndrome. The volumes were analyzed offline using a commercially available segmentation algorithm designed for ovarian folliculometry. Using this software, individual 'cavities' in a static volume are selected and assigned individual colors in cross-sections and in 3D-rendered views, and their dimensions (diameters and volumes) can be calculated. RESULTS: Individual segments of fetal cardiac cavities could be separated, adjacent segments merged and the resulting electronic casts studied in their spatial context. Volume measurements could also be performed. Exemplary images and interactive videoclips showing the segmented digital casts were generated. CONCLUSION: The approach presented here is an important step towards an automated fetal volume echocardiogram. It has the potential both to help in obtaining a correct structural diagnosis, and to generate exemplary visual displays of cardiac anatomy in normal and structurally abnormal cases for consultation and teaching.
Resumo:
Six full-term newborn infants are described who suffered from severe adult respiratory distress syndrome (ARDS). The triggering event was intrauterine/perinatal asphyxia in five, and group B streptococcal (GBS) septicemia in three. All had severe respiratory distress/failure and were ventilated mechanically with high concentrations of inspired oxygen and positive end-expiratory pressure. Radiography of the chest showed dense bilateral consolidation with air bronchograms and reduced lung volume. Persistent pulmonary hypertension (PPH) was documented in all cases. The coincidence of ARDS and PPH rendered respiratory management extremely difficult. For this reason high-frequency ventilation was instituted in all patients in order to improve CO2 elimination and induce respiratory alkalosis. Acute complications of respiratory therapy were encountered in five patients (pneumothorax, pulmonary interstitial emphysema, pneumopericardium). Three infants died (irreversible septic shock, progressive severe hypoxemia, and sudden cardiac arrest) after 17, 80, and 175 h of life. Histologic examination of the lungs was possible in all fatal cases and revealed typical changes of acute to subacute stages of ARDS. Three infants survived, the mean time of mechanical respiratory support being 703 h. Two patients were still dependent on oxygen after 1 month of life, and all survivors had increased interstitial markings and increased lung volumes on their chest roentgenograms at this time.
Resumo:
Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and chronic bronchitis and is a leading cause of morbidity and mortality worldwide. Tobacco smoke and deficiency in α1-antitrypsin (AAT) are the most prominent environmental and genetic risk factors, respectively. Yet the pathogenesis of COPD is not completely elucidated. Disease progression appears to include a vicious circle driven by self-perpetuating lung inflammation, endothelial and epithelial cell death, and proteolytic degradation of extracellular matrix proteins. Like AAT, serpinB1 is a potent inhibitor of serine proteases including neutrophil elastase and cathepsin G. Because serpinB1 is expressed in myeloid and lung epithelial cells and is protective during lung infections, we investigated the role of serpinB1 in preventing age-related and cigarette smoke-induced emphysema in mice. Fifteen-month-old mice showed increased lung volume and decreased pulmonary function compared with young adult mice (3 mo old), but no differences were observed between serpinB1-deficient (KO) and wild-type (WT) mice. Chronic exposure to secondhand cigarette smoke resulted in structural emphysematous changes compared with respective control mice, but no difference in lung morphometry was observed between genotypes. Of note, the different pattern of stereological changes induced by age and cigarette smoke suggest distinct mechanisms leading to increased airway volume. Finally, expression of intracellular and extracellular protease inhibitors were differently regulated in lungs of WT and KO mice following smoke exposure; however, activity of proteases was not significantly altered. In conclusion, we showed that, although AAT and serpinB1 are similarly potent inhibitors of neutrophil proteases, serpinB1 deficiency is not associated with more severe emphysema.
Resumo:
OBJECTIVE: The assessment of coronary stents with present-generation 64-detector row computed tomography (HDCT) scanners is limited by image noise and blooming artefacts. We evaluated the performance of adaptive statistical iterative reconstruction (ASIR) for noise reduction in coronary stent imaging with HDCT. METHODS AND RESULTS: In 50 stents of 28 patients (mean age 64 ± 10 years) undergoing coronary CT angiography (CCTA) on an HDCT scanner the mean in-stent luminal diameter, stent length, image quality, in-stent contrast attenuation, and image noise were assessed. Studies were reconstructed using filtered back projection (FBP) and ASIR-FBP composites. ASIR resulted in reduced image noise vs. FBP (P < 0.0001). Two readers graded the CCTA stent image quality on a 4-point Likert scale and determined the proportion of interpretable stent segments. The best image quality for all clinical images was obtained with 40 and 60% ASIR with significantly larger luminal area visualization compared with FBP (+42.1 ± 5.4% with 100% ASIR vs. FBP alone; P < 0.0001) while the stent length was decreased (-4.7 ± 0.9%,
volume measurements were unaffected. CONCLUSION: Reconstruction of CCTA from HDCT using 40 and 60% ASIR incrementally improves intra-stent luminal area, diameter visualization, and image quality compared with FBP reconstruction.
Resumo:
BACKGROUND AND PURPOSE Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. METHODS We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. RESULTS Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. CONCLUSIONS In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.
Resumo:
PURPOSE A beamlet based direct aperture optimization (DAO) for modulated electron radiotherapy (MERT) using photon multileaf collimator (pMLC) shaped electron fields is developed and investigated. METHODS The Swiss Monte Carlo Plan (SMCP) allows the calculation of dose distributions for pMLC shaped electron beams. SMCP is interfaced with the Eclipse TPS (Varian Medical Systems, Palo Alto, CA) which can thus be included into the inverse treatment planning process for MERT. This process starts with the import of a CT-scan into Eclipse, the contouring of the target and the organs at risk (OARs), and the choice of the initial electron beam directions. For each electron beam, the number of apertures, their energy, and initial shape are defined. Furthermore, the DAO requires dose-volume constraints for the structures contoured. In order to carry out the DAO efficiently, the initial electron beams are divided into a grid of beamlets. For each of those, the dose distribution is precalculated using a modified electron beam model, resulting in a dose list for each beamlet and energy. Then the DAO is carried out, leading to a set of optimal apertures and corresponding weights. These optimal apertures are now converted into pMLC shaped segments and the dose calculation for each segment is performed. For these dose distributions, a weight optimization process is launched in order to minimize the differences between the dose distribution using the optimal apertures and the pMLC segments. Finally, a deliverable dose distribution for the MERT plan is obtained and loaded back into Eclipse for evaluation. For an idealized water phantom geometry, a MERT treatment plan is created and compared to the plan obtained using a previously developed forward planning strategy. Further, MERT treatment plans for three clinical situations (breast, chest wall, and parotid metastasis of a squamous cell skin carcinoma) are created using the developed inverse planning strategy. The MERT plans are compared to clinical standard treatment plans using photon beams and the differences between the optimal and the deliverable dose distributions are determined. RESULTS For the idealized water phantom geometry, the inversely optimized MERT plan is able to obtain the same PTV coverage, but with an improved OAR sparing compared to the forwardly optimized plan. Regarding the right-sided breast case, the MERT plan is able to reduce the lung volume receiving more than 30% of the prescribed dose and the mean lung dose compared to the standard plan. However, the standard plan leads to a better homogeneity within the CTV. The results for the left-sided thorax wall are similar but also the dose to the heart is reduced comparing MERT to the standard treatment plan. For the parotid case, MERT leads to lower doses for almost all OARs but to a less homogeneous dose distribution for the PTV when compared to a standard plan. For all cases, the weight optimization successfully minimized the differences between the optimal and the deliverable dose distribution. CONCLUSIONS A beamlet based DAO using multiple beam angles is implemented and successfully tested for an idealized water phantom geometry and clinical situations.
Resumo:
PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.
Resumo:
OBJECTIVE Endoscopic lung volume reduction (ELVR) with valves has been shown to improve COPD patients with severe emphysema. However, a major complication is pneumothoraces, occurring typically soon after valve implantation, with severe consequences if not managed promptly. Based on the knowledge that strain activity is related to a higher risk of pneumothoraces, we asked whether modifying post-operative medical care with the inclusion of strict short-term limitation of strain activity is associated with a lower incidence of pneumothorax. METHODS Seventy-two (72) emphysematous patients without collateral ventilation were treated with bronchial valves and included in the study. Thirty-two (32) patients received standard post-implantation medical management (Standard Medical Care (SMC)), and 40 patients received a modified medical care that included an additional bed rest for 48 hours and cough suppression, as needed (Modified Medical Care (MMC)). RESULTS The baseline characteristics were similar for the two groups, except there were more males in the SMC cohort. Overall, ten pneumothoraces occurred up to four days after ELVR, eight pneumothoraces in the SMC, and only two in the MMC cohorts (p=0.02). Complicated pneumothoraces and pneumothoraces after upper lobe treatment were significantly lower in MMC (p=0.02). Major clinical outcomes showed no significant differences between the two cohorts. CONCLUSIONS In conclusion, modifying post-operative medical care to include bed rest for 48 hours after ELVR and cough suppression, if needed, might reduce the incidence of pneumothoraces. Prospective randomized studies with larger numbers of well-matched patients are needed to confirm the data.
Tidal volume single breath washout of two tracer gases--a practical and promising lung function test
Resumo:
Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing.
Resumo:
Despite association with lung growth and long-term respiratory morbidity, there is a lack of normative lung function data for unsedated infants conforming to latest European Respiratory Society/American Thoracic Society standards. Lung function was measured using an ultrasonic flow meter in 342 unsedated, healthy, term-born infants at a mean ± sd age of 5.1 ± 0.8 weeks during natural sleep according to the latest standards. Tidal breathing flow-volume loops (TBFVL) and exhaled nitric oxide (eNO) measurements were obtained from 100 regular breaths. We aimed for three acceptable measurements for multiple-breath washout and 5-10 acceptable interruption resistance (R(int)) measurements. Acceptable measurements were obtained in ≤ 285 infants with high variability. Mean values were 7.48 mL·kg⁻¹ (95% limits of agreement 4.95-10.0 mL·kg⁻¹) for tidal volume, 14.3 ppb (2.6-26.1 ppb) for eNO, 23.9 mL·kg⁻¹ (16.0-31.8 mL·kg⁻¹) for functional residual capacity, 6.75 (5.63-7.87) for lung clearance index and 3.78 kPa·s·L⁻¹ (1.14-6.42 kPa·s·L⁻¹) for R(int). In males, TBFVL outcomes were associated with anthropometric parameters and in females, with maternal smoking during pregnancy, maternal asthma and Caesarean section. This large normative data set in unsedated infants offers reference values for future research and particularly for studies where sedation may put infants at risk. Furthermore, it highlights the impact of maternal and environmental risk factors on neonatal lung function.