123 resultados para Lunar Mission
Resumo:
The TROPOspheric Monitoring Instrument (TROPOMI) will be part of ESA's Sentinel-5 Precursor (S5P) satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR). S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm) to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON). The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1) were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1). For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.
Resumo:
Popular belief holds that the lunar cycle affects human physiology, behaviour and health. We examined the influence of moon phase on sleep duration in a secondary analysis of a feasibility study of mobile telephone base stations and sleep quality. We studied 31 volunteers (18 women and 13 men, mean age 50 years) from a suburban area of Switzerland longitudinally over 6 weeks, including two full moons. Subjective sleep duration was calculated from sleep diary data. Data were analysed using multiple linear regression models with random effects. Mean sleep duration was 6 h 49 min. Subjective sleep duration varied with the lunar cycle, from 6 h 41 min at full moon to 7 h 00 min at new moon (P < 0.001). Average sleep duration was shortened by 68 min during the week compared with weekends (P < 0.001). Men slept 17 min longer than women (P < 0.001) and sleep duration decreased with age (P < 0.001). There was also evidence that rating of fatigue in the morning was associated with moon phase, with more tiredness (P = 0.027) at full moon. The study was designed for other purposes and the association between lunar cycle and sleep duration will need to be confirmed in further studies.