112 resultados para Los Angeles Health Department


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intravenous (IV) Δ9-tetrahydrocannabinol (THC) induces transient psychotic symptoms in healthy subjects and in schizophrenic patients, but the psychotomimetic mechanism is unknown. One possibility is that THC stimulates dopamine (DA) release in the striatum. In this study we tested whether IV THC led to an increase in striatal DA release compared to placebo. We also investigated whether DA release and positive psychotic symptoms were related. Eleven healthy male volunteers completed two 123I-iodobenzamide ([123I]IBZM) single photon emission tomography (SPET) sessions and received IV THC (2.5 mg) or placebo in a randomized counterbalanced order, under double-blind conditions. Analysable data were obtained from nine participants. The Positive and Negative Syndrome Scale (PANSS) was used to rate psychotomimetic effects. Striatal binding index values were calculated using the occipital cortex as a reference region. Both the PANSS positive and general symptoms increased significantly at 30 min following IV THC. There were no significant differences in binding index in the caudate or putamen under THC compared to placebo conditions. Positive psychotic symptoms and DA release were unrelated. THC did not lead to a significant increase in DA release even though the dose was sufficient for participants to have psychotic symptoms. These findings do not support a central role for striatal DA in THC-elicited psychosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity in 10 healthy volunteers. In addition to blood-oxygen-level-dependent (BOLD) contrast we assessed the effect of dopaminergic depletion on prolactin response, peripheral markers for dopamine and norepinephrine. In the placebo condition we found increased activation in the left caudate and left cingulate gyrus during anticipation of reward. In the α-methylparatyrosine condition there was no significant brain activation during anticipation of reward or loss. In α-methylparatyrosine, anticipation of reward vs. loss increased activation in the right insula, left frontal, right parietal cortices and right cingulate gyrus. Comparing placebo versus α-methylparatyrosine showed increased activation in the left cingulate gyrus during anticipation of reward and the left medial frontal gyrus during anticipation of loss. α-methylparatyrosine reduced levels of dopamine in urine and homovanillic acid in plasma and increased prolactin. No significant effect of α-methylparatyrosine was found on norepinephrine markers. Our findings implicate distinct patterns of BOLD underlying reward processing following dopamine depletion, suggesting a role of dopaminergic neurotransmission for anticipation of monetary reward.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have suggested that polymorphism in the serotonin transporter gene (5-HTTLPR) influences responses to serotonergic manipulation, with opposite effects in patients recovered from depression (rMDD) and controls. Here we sought to clarify the neurocognitive mechanisms underpinning these surprising results. Twenty controls and 23 rMDD subjects completed the study; functional magnetic resonance imaging (fMRI) and genotype data were available for 17 rMDD subjects and 16 controls. Following tryptophan or sham depletion, subjects performed an emotional-processing task during fMRI. Although no genotype effects on mood were identified, significant genotype(∗)diagnosis(∗)depletion interactions were observed in the hippocampus and subgenual cingulate in response to emotionally valenced words. In both regions, tryptophan depletion increased responses to negative words, relative to positive words, in high-expression controls, previously identified as being at low-risk for mood change following this procedure. By contrast, in higher-risk low-expression controls and high-expression rMDD subjects, tryptophan depletion had the opposite effect. Increased neural responses to negative words following tryptophan depletion may reflect an adaptive mechanism promoting resilience to mood change following perturbation of the serotonin system, which is reversed in sub-groups vulnerable to developing depressive symptoms. However, this interpretation is complicated by our failure to replicate previous findings of increased negative mood following tryptophan depletion.

Relevância:

100.00% 100.00%

Publicador: