79 resultados para Little Ice Age
Resumo:
Anatolia is situated in the Eastern Mediterranean region between 36 – 42N and 26 – 45E. The geological records of paleoglaciations in the high terrains of Anatolia are key archives to quantify paleoclimate change in the Eastern Mediterranean area. The climate of the Eastern Mediterranean region is influenced by three main atmospheric systems: the main middle to high latitude westerlies, the mid-latitude subtropical high-pressure systems, and the monsoon climate. Glacial geological studies in Turkey have started in the late 19th century. Glacial deposits are found mainly in the eastern, northeastern and southern part of the Anatolian Peninsula. Anatolia is the fundamental element to understand the interactions between paleoenvironment, climatic variations, and development of the human societies. As the Taurus and Black Sea Mountains are sensitively situated for the paleoclimatic reconstructions, a chronostratigraphic framework on the paleoglaciation should be elaborated. The timing of the Last Glacial Maximum (LGM) in Anatolia is still unknown. Our first results from Kavron Valley (Kaçkar Mountains, NE Turkey) are encouraging for the reconstruction of paleoglaciations in Turkey and related paleoclimatological interpretations although it is presently difficult to pinpoint the classical Last Glacial Maximum – Younger Dryas – Little Ice Age moraine sequences in the field.
Resumo:
Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
Resumo:
Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5–PMIP3 (Coupled Model Intercomparison Project Phase 5–Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.
Resumo:
There were several centennial-scale fluctuations in the climate and oceanography of the North Atlantic region over the past 1,000 years, including a period of relative cooling from about AD 1450 to 1850 known as the Little Ice Age1. These variations may be linked to changes in solar irradiance, amplified through feedbacks including the Atlantic meridional overturning circulation2. Changes in the return limb of the Atlantic meridional overturning circulation are reflected in water properties at the base of the mixed layer south of Iceland. Here we reconstruct thermocline temperature and salinity in this region from AD 818 to 1780 using paired δ18O and Mg/Ca ratio measurements of foraminifer shells from a subdecadally resolved marine sediment core. The reconstructed centennial-scale variations in hydrography correlate with variability in total solar irradiance. We find a similar correlation in a simulation of climate over the past 1,000 years. We infer that the hydrographic changes probably reflect variability in the strength of the subpolar gyre associated with changes in atmospheric circulation. Specifically, in the simulation, low solar irradiance promotes the development of frequent and persistent atmospheric blocking events, in which a quasi-stationary high-pressure system in the eastern North Atlantic modifies the flow of the westerly winds. We conclude that this process could have contributed to the consecutive cold winters documented in Europe during the Little Ice Age.
Resumo:
Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400-1700 CE Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950-1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s, human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest ``fire deficit'' in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.
Resumo:
Sphagnum peatlands in the oceanic-continental transition zone of Poland are currently influenced by climatic and anthropogenic factors that lead to peat desiccation and susceptibility to fire. Little is known about the response of Sphagnum peatland testate amoebae (TA) to the combined effects of drought and fire. To understand the relationships between hydrology and fire dynamics, we used high-resolution multi-proxy palaeoecological data to reconstruct 2000 years of mire history in northern Poland. We employed a new approach for Polish peatlands – joint TA-based water table depth and charcoal-inferred fire activity reconstructions. In addition, the response of most abundant TA hydrological indicators to charcoal-inferred fire activity was assessed. The results show four hydrological stages of peatland development: moderately wet (from ∼35 BC to 800 AD), wet (from ∼800 to 1390 AD), dry (from ∼1390 to 1700 AD) and with an instable water table (from ∼1700 to 2012 AD). Fire activity has increased in the last millennium after constant human presence in the mire surroundings. Higher fire activity caused a rise in the water table, but later an abrupt drought appeared at the onset of the Little Ice Age. This dry phase is characterized by high ash contents and high charcoal-inferred fire activity. Fires preceded hydrological change and the response of TA to fire was indirect. Peatland drying and hydrological instability was connected with TA community changes from wet (dominance of Archerella flavum, Hyalosphenia papilio, Amphitrema wrightianum) to dry (dominance of Cryptodifflugia oviformis, Euglypha rotunda); however, no clear fire indicator species was found. Anthropogenic activities can increase peat fires and cause substantial hydrology changes. Our data suggest that increased human fire activity was one of the main factors that influenced peatland hydrology, though the mire response through hydrological changes towards drier conditions was delayed in relation to the surrounding vegetation changes.
Resumo:
High-resolution records of calibrated proxy data for the past millennium are fundamental to place current changes into the context of pre-industrial natural forced and unforced variability. Although the need for regional spatially-explicit comprehensive reconstructions is widely recognized, the proxy data sources are still scarce, particularly for the Southern Hemisphere and especially for South America. We present a 600-year long warm season temperature record from varved sediments of Lago Plomo, a proglacial lake of the Northern Patagonian Ice field in Southern Chile (46°59′S, 72°52′W, 203 m a.s.l.). The thickness of the bright summer sediment layer relative to the dark winter layer (measured as total brightness; % reflectance 400–730 nm) is calibrated against warm season SONDJF temperature (1900–2009; r = 0.58, p(aut) = 0.056, RE = 0.52; CE = 0.15, RMSEP = 0.28 °C; five-year triangular filtered data). In Lago Plomo, warm summer temperatures lead to enhanced glacier melt and suspended sediment transport, which results in thicker light summer layers and to brighter sediments. Although Patagonia shows pronounced regional differences in decadal temperature trends and variability, the 600 years temperature reconstruction from Lago Plomo compares favourably with other regional/continental temperature records, but also emphasizes significant regional differences for which no data and information existed so far. These regional differences seem to be real as they are also reflected in modern climate data sets (1900–2010). The reconstruction shows pronounced subdecadal – multidecadal variability with cold phases during parts of the Little Ice Age (16th and 18th centuries) and in the beginning of the 20th century. The most prominent warm phase is the 19th century which is as warm as the second half of the 20th century. The exceptional summer warmth AD 1780–1810 is also found in other archives of Northern Patagonia and Central Chile. Our record shows the delayed 20th century warming in the Southern Hemisphere. The comparison between winter precipitation and summer temperature (inter-seasonal coupling) from Lago Plomo reveals alternating phases with parallel and contrasting decadal trends of winter precipitation and summer temperature (positive and negative running correlations Rwinter PP; summer TT). This observation from the sediment proxy data is also confirmed by two sets of reanalysis data for the 20th century. Reanalysis data show that phases with negative correlations between winter precipitation and summer temperature (e.g., dry winters and warm summers) at Lago Plomo are characteristic for periods when circumpolar Westerly flow is displaced southward and enhanced around 60°S.
Resumo:
This paper presents a multiproxy high-resolution study of the past 2600 years for Seebergsee, a small Swiss lake with varved sediments at the present tree-line ecotone. The laminae were identified as varves by a numerical analysis of diatom counts in the thin-sections. The hypothesis of two diatom blooms per year was corroborated by the 210Pb and 137Cs chronology. A period of intensive pasturing during the ‘Little Ice Age’ between ad 1346 and ad 1595 is suggested by coprophilous fungal spores, as well as by pollen indicators of grazing, by the diatom-inferred total phosphorus, by geochemistry and by documentary data. The subsequent re-oligotrophication of the lake took about 88 years, as determined by the timelag between the decline of coprophile fungal spores and the restoration of pre-eutrophic nutrient conditions. According to previous studies of latewood densities from the same region, cold summers around ad 1600 limited the pasturing at this altitude. This demonstrated the socio-economic impact of a single climatic event. However, the variance partitioning between the effects of land use and climate, which was applied for the whole core, revealed that climate independent of land use and time explained only 1.32% of the diatom data, while land use independent of climate and time explained 15.7%. Clearly land use in‘ uenced the lake, but land use was not always driven by climate. Other factors beside climate, such as politics or the introduction of fertilizers in the seventeenth and eighteenth centuries also in‘ uenced the development of Alpine pasturing.
Resumo:
Several short sediment cores of between 35 and 40 cm from Hagelseewli, a small, remote lake in the Swiss Alps at an elevation of 2339 m a.s.l. were correlated according to their organic matter content. The sediments are characterized by organic silts and show in their uppermost part a surprisingly high amount of organic matter (30-35%). Synchronous changes, occurring in pollen from snow-bed vegetation, the alga Pediastrum, chironomids, and grain-size composition, point to a climatic change interpreted as cooler or shorter summers that led to prolonged ice-cover on the lake. According to palynological results the sediments date back to at least the early 15th century A.D., with the cooling phase encompassing the period between late 16th and the mid-19th century thus coinciding with the Little Ice Age. Low concentrations of both chironomid head capsules and cladoceran remains in combination with results from fossil pigment analyses point to longer periods of bottom-water anoxia as a result of long-lasting ice-cover that prevented mixing of the water column. According to our results aquatic biota in Hagelseewli are mainly indirectly influenced by climate change. The duration of ice-cover on the lake controls the mixing of the water column as well as light-availability for phytoplankton blooms.
Resumo:
The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June–August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951–2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986–2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850–2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.
Resumo:
Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC–0 AD), the Medieval Climate Anomaly (MCA) (800–1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400–500 BC, the Late Roman and the Early Medieval periods (0–800 AD) and during the Little Ice Age (1400–1800 AD). Hydrological fluctuations recorded in Butrint are in phase with most central and western Mediterranean records and correlate with NAO variability. In contrast, opposite hydrological patterns have been recorded in the Eastern Balkans and the Levant during the last millennium, emphasizing a complex spatial variability in the region. Phases of maximum settlement intensity in Butrint (Roman-Late Antique) coincide with warmer and/or stable climate periods (0–800 AD and MCA, respectively), indicating a long-term influence of climatic conditions on human activities. The Late Holocene sedimentary record of Lake Butrint demonstrates the complex interplay of climate variability, tectonics and human impact in the recent evolution of coastal Mediterranean regions.
Resumo:
A precise synchronization of different climate records is indispensable for a correct dynamical interpretation of paleoclimatic data. A chronology for the TALDICE ice core from the Ross Sea sector of East Antarctica has recently been presented based on methane synchronization with Greenland and the EDC ice cores and δ18Oice synchronization with EDC in the bottom part (TALDICE-1). Using new high-resolution methane data obtained with a continuous flow analysis technique, we present a refined age scale for the age interval from 55–112 thousand years (ka) before present, where TALDICE is synchronized with EDC. New and more precise tie points reduce the uncertainties of the age scale from up to 1900 yr in TALDICE-1 to below 1100 yr over most of the refined interval and shift the Talos Dome dating to significantly younger ages during the onset of Marine Isotope Stage 3. Thus, discussions of climate dynamics at sub-millennial time scales are now possible back to 110 ka, in particular during the inception of the last ice age. Calcium data of EDC and TALDICE are compared to show the impact of the refinement to the synchronization of the two ice cores not only for the gas but also for the ice age scale.
Resumo:
High-resolution measurements of chemical impurities and methane concentrations in Greenland ice core samples from the early glacial period allow the extension of annual-layer counted chronologies and the improvement of gas age-ice age difference (Δage) essential to the synchronization of ice core records. We report high-resolution measurements of a 50 m section of the NorthGRIP ice core and corresponding annual layer thicknesses in order to constrain the duration of the Greenland Stadial 22 (GS-22) between Greenland Interstadials (GIs) 21 and 22, for which inconsistent durations and ages have been reported from Greenland and Antarctic ice core records as well as European speleothems. Depending on the chronology used, GS-22 occurred between approximately 89 (end of GI-22) and 83 kyr b2k (onset of GI-21). From annual layer counting, we find that GS-22 lasted between 2696 and 3092 years and was followed by a GI-21 pre-cursor event lasting between 331 and 369 yr. Our layer-based counting agrees with the duration of stadial 22 as determined from the NALPS speleothem record (3250 ± 526 yr) but not with that of the GICC05modelext chronology (2620 yr) or an alternative chronology based on gas-marker synchronization to EPICA Dronning Maud Land ice core. These results show that GICC05modelext overestimates accumulation and/or underestimates thinning in this early part of the last glacial period. We also revise the possible ranges of NorthGRIP Δdepth (5.49 to 5.85 m) and Δage (498 to 601 yr) at the warming onset of GI-21 as well as the Δage range at the onset of the GI-21 precursor warming (523 to 654 yr), observing that temperature (represented by the δ15N proxy) increases before CH4 concentration by no more than a few decades.
Resumo:
Glacier highstands since the Last Glacial Maximum are well documented for many regions, but little is known about glacier fluctuations and lowstands during the Holocene. This is because the traces of minimum extents are difficult to identify and at many places are still ice covered, limiting the access to sample material. Here we report a new approach to assess minimal glacier extent, using a 72-m long surface-to-bedrock ice core drilled on Khukh Nuru Uul, a glacier in the Tsambagarav mountain range of the Mongolian Altai (4130 m asl, 48°39.338′N, 90°50.826′E). The small ice cap has low ice temperatures and flat bedrock topography at the drill site. This indicates minimal lateral glacier flow and thereby preserved climate signals. The upper two-thirds of the ice core contain 200 years of climate information with annual resolution, whereas the lower third is subject to strong thinning of the annual layers with a basal ice age of approximately 6000 years before present (BP). We interpret the basal ice age as indicative of ice-free conditions in the Tsambagarav mountain range at 4100 m asl prior to 6000 years BP. This age marks the onset of the Neoglaciation and the end of the Holocene Climate Optimum. The ice-free conditions allow for adjusting the Equilibrium Line Altitude (ELA) and derive the glacier extent in the Mongolian Altai during the Holocene Climate Optimum. Based on the ELA-shift, we conclude that most of the glaciers are not remnants of the Last Glacial Maximum but were formed during the second part of the Holocene. The ice core derived accumulation reconstruction suggests important changes in the precipitation pattern over the last 6000 years. During formation of the glacier, more humid conditions than presently prevailed followed by a long dry period from 5000 years BP until 250 years ago. Present conditions are more humid than during the past millennia. This is consistent with precipitation evolution derived from lake sediment studies in the Altai.
Resumo:
A new, decadally resolved record of the 10Be peak at 41 kyr from the EPICA Dome C ice core (Antarctica) is used to match it with the same peak in the GRIP ice core (Greenland). This permits a direct synchronisation of the climatic variations around this time period, independent of uncertainties related to the ice age-gas age difference in ice cores. Dansgaard-Oeschger event 10 is in the period of best synchronisation and is found to be coeval with an Antarctic temperature maximum. Simulations using a thermal bipolar seesaw model agree reasonably well with the observed relative climate chronology in these two cores. They also reproduce three Antarctic warming events observed between A1 and A2.